Limiting Eigenvalue Distribution of the General Deformed Ginibre Ensemble

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Roman Sarapin
{"title":"Limiting Eigenvalue Distribution of the General Deformed Ginibre Ensemble","authors":"Roman Sarapin","doi":"10.1007/s10955-025-03492-z","DOIUrl":null,"url":null,"abstract":"<div><p>Consider the <span>\\(n\\times n\\)</span> matrix <span>\\(X_n=A_n+H_n\\)</span>, where <span>\\(A_n\\)</span> is a <span>\\(n\\times n\\)</span> matrix (either deterministic or random) and <span>\\(H_n\\)</span> is a <span>\\(n\\times n\\)</span> matrix independent from <span>\\(A_n\\)</span> drawn from complex Ginibre ensemble. We study the limiting eigenvalue distribution of <span>\\(X_n\\)</span>. In [45] it was shown that the eigenvalue distribution of <span>\\(X_n\\)</span> converges to some deterministic measure. This measure is known for the case <span>\\(A_n=0\\)</span>. Under some general convergence conditions on <span>\\(A_n\\)</span> we prove a formula for the density of the limiting measure. We also obtain an estimation on the rate of convergence of the distribution. The approach used here is based on supersymmetric integration.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 8","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03492-z","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Consider the \(n\times n\) matrix \(X_n=A_n+H_n\), where \(A_n\) is a \(n\times n\) matrix (either deterministic or random) and \(H_n\) is a \(n\times n\) matrix independent from \(A_n\) drawn from complex Ginibre ensemble. We study the limiting eigenvalue distribution of \(X_n\). In [45] it was shown that the eigenvalue distribution of \(X_n\) converges to some deterministic measure. This measure is known for the case \(A_n=0\). Under some general convergence conditions on \(A_n\) we prove a formula for the density of the limiting measure. We also obtain an estimation on the rate of convergence of the distribution. The approach used here is based on supersymmetric integration.

广义变形Ginibre系综的极限特征值分布
考虑\(n\times n\)矩阵\(X_n=A_n+H_n\),其中\(A_n\)是一个\(n\times n\)矩阵(确定性的或随机的),\(H_n\)是一个独立于\(A_n\)的\(n\times n\)矩阵,从复杂的Ginibre集合中提取。研究了\(X_n\)的极限特征值分布。在[45]中,证明了\(X_n\)的特征值分布收敛于某种确定性测度。这一措施以案例\(A_n=0\)而闻名。在\(A_n\)上的一些一般收敛条件下,证明了极限测度密度的一个公式。我们还得到了分布收敛速度的估计。这里使用的方法是基于超对称积分的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信