Quantifying the equivalency factor between PM-absorbance and EC mass concentration – converting the “old” exposure proxy in large health studies to the new metric for diesel soot
{"title":"Quantifying the equivalency factor between PM-absorbance and EC mass concentration – converting the “old” exposure proxy in large health studies to the new metric for diesel soot","authors":"Harry ten Brink, Gerard Hoek, Regina Hitzenberger","doi":"10.1007/s11869-025-01741-4","DOIUrl":null,"url":null,"abstract":"<div><p>The light absorbance of PM-samples on PTFE filters is often used as a measure for exposure to diesel soot in large-scale health studies. Absorbance is a synonym for the optical parameter “absorption coefficient” (AbsC). The formal exposure measure for diesel soot is the mass concentration of the light absorbing species of PM, viz. elemental carbon (EC). In the central health effects study by Janssen et al. [2011] a relation between AbsC and <u>EC</u> is presented, however with an overall uncertainty of 2.5. In the present study, we started with an analysis of the measuring approach of light absorption according to ISO-9835 [ISO, 1993]. Following this procedure, absorption is probed in reflection and expressed in the ratio of the intensity of light reflected from/by a clean and a loaded filter. The AbsC is the logarithm of this ratio (which is known as optical depth) scaled to the volume of air sampled and loaded filter area. We first critically reanalysed the studies used by Janssen et al. [2011] in which the equivalency factor between absorbance and EC concentration was given. We found a good linear relationship when we selected only those data points for which the optical density (OD) was within the proper limits of 0.05 and 2.0. We then analysed which methods had been used to obtain EC data in those studies (and also more recent ones) and selected only those studies where EC had been determined with an official reference approach, i.e. the USreference method NIOSH-5400. The overall relation of EC mass concentration in µg m<sup>−3</sup> and AbsC in units of 10<sup>–5</sup> m<sup>−1</sup> was 0.8 (R<sup>2</sup> = 0.92), or 1.0 according to the EU-reference method EUSAAR2-TOT with a factor of 1.25 between US and EU reference EC values. This highly improved estimate of equivalence factors between AbsC and EC might be used to translate the results of existing health effects studies (based on AbsC) to studies using current EC monitoring data (as prescribed in EU-guidelines for air quality) to investigate the possible health effects at a given EC level.</p></div>","PeriodicalId":49109,"journal":{"name":"Air Quality Atmosphere and Health","volume":"18 6","pages":"1887 - 1893"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11869-025-01741-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Air Quality Atmosphere and Health","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11869-025-01741-4","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The light absorbance of PM-samples on PTFE filters is often used as a measure for exposure to diesel soot in large-scale health studies. Absorbance is a synonym for the optical parameter “absorption coefficient” (AbsC). The formal exposure measure for diesel soot is the mass concentration of the light absorbing species of PM, viz. elemental carbon (EC). In the central health effects study by Janssen et al. [2011] a relation between AbsC and EC is presented, however with an overall uncertainty of 2.5. In the present study, we started with an analysis of the measuring approach of light absorption according to ISO-9835 [ISO, 1993]. Following this procedure, absorption is probed in reflection and expressed in the ratio of the intensity of light reflected from/by a clean and a loaded filter. The AbsC is the logarithm of this ratio (which is known as optical depth) scaled to the volume of air sampled and loaded filter area. We first critically reanalysed the studies used by Janssen et al. [2011] in which the equivalency factor between absorbance and EC concentration was given. We found a good linear relationship when we selected only those data points for which the optical density (OD) was within the proper limits of 0.05 and 2.0. We then analysed which methods had been used to obtain EC data in those studies (and also more recent ones) and selected only those studies where EC had been determined with an official reference approach, i.e. the USreference method NIOSH-5400. The overall relation of EC mass concentration in µg m−3 and AbsC in units of 10–5 m−1 was 0.8 (R2 = 0.92), or 1.0 according to the EU-reference method EUSAAR2-TOT with a factor of 1.25 between US and EU reference EC values. This highly improved estimate of equivalence factors between AbsC and EC might be used to translate the results of existing health effects studies (based on AbsC) to studies using current EC monitoring data (as prescribed in EU-guidelines for air quality) to investigate the possible health effects at a given EC level.
期刊介绍:
Air Quality, Atmosphere, and Health is a multidisciplinary journal which, by its very name, illustrates the broad range of work it publishes and which focuses on atmospheric consequences of human activities and their implications for human and ecological health.
It offers research papers, critical literature reviews and commentaries, as well as special issues devoted to topical subjects or themes.
International in scope, the journal presents papers that inform and stimulate a global readership, as the topic addressed are global in their import. Consequently, we do not encourage submission of papers involving local data that relate to local problems. Unless they demonstrate wide applicability, these are better submitted to national or regional journals.
Air Quality, Atmosphere & Health addresses such topics as acid precipitation; airborne particulate matter; air quality monitoring and management; exposure assessment; risk assessment; indoor air quality; atmospheric chemistry; atmospheric modeling and prediction; air pollution climatology; climate change and air quality; air pollution measurement; atmospheric impact assessment; forest-fire emissions; atmospheric science; greenhouse gases; health and ecological effects; clean air technology; regional and global change and satellite measurements.
This journal benefits a diverse audience of researchers, public health officials and policy makers addressing problems that call for solutions based in evidence from atmospheric and exposure assessment scientists, epidemiologists, and risk assessors. Publication in the journal affords the opportunity to reach beyond defined disciplinary niches to this broader readership.