A Strong Large Deviation Principle for the Empirical Measure of Random Walks

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Dirk Erhard, Tertuliano Franco, Joedson de Jesus Santana
{"title":"A Strong Large Deviation Principle for the Empirical Measure of Random Walks","authors":"Dirk Erhard,&nbsp;Tertuliano Franco,&nbsp;Joedson de Jesus Santana","doi":"10.1007/s10955-025-03463-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this article we show that the empirical measure of certain continuous time random walks satisfies a strong large deviation principle with respect to a topology introduced in [15] by Mukherjee and Varadhan. This topology is natural in models which exhibit an invariance with respect to spatial translations. Our result applies in particular to the case of simple random walk and complements the results obtained in [15] in which the large deviation principle has been established for the empirical measure of Brownian motion.\n</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 6","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03463-4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this article we show that the empirical measure of certain continuous time random walks satisfies a strong large deviation principle with respect to a topology introduced in [15] by Mukherjee and Varadhan. This topology is natural in models which exhibit an invariance with respect to spatial translations. Our result applies in particular to the case of simple random walk and complements the results obtained in [15] in which the large deviation principle has been established for the empirical measure of Brownian motion.

随机漫步经验测度的强大偏差原理
在本文中,我们证明了某些连续时间随机漫步的经验测度满足关于Mukherjee和Varadhan在[15]中引入的拓扑的强大偏差原则。这种拓扑结构在空间平移方面表现出不变性的模型中是很自然的。我们的结果特别适用于简单随机漫步的情况,并补充了b[15]中所得到的结果,b[15]中已经为布朗运动的经验测量建立了大偏差原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信