Stability of Strong Solutions to the Full Compressible Magnetohydrodynamic System with Non-Conservative Boundary Conditions

IF 1.3 3区 数学 Q2 MATHEMATICS, APPLIED
Hana Mizerová
{"title":"Stability of Strong Solutions to the Full Compressible Magnetohydrodynamic System with Non-Conservative Boundary Conditions","authors":"Hana Mizerová","doi":"10.1007/s00021-025-00967-7","DOIUrl":null,"url":null,"abstract":"<div><p>We define a dissipative measure-valued (DMV) solution to the system of equations governing the motion of a general compressible, viscous, electrically and heat conducting fluid driven by non-conservative boundary conditions. We show the stability of strong solutions to the full compressible magnetohydrodynamic system in a large class of these DMV solutions. In other words, we prove a DMV-strong uniqueness principle: a DMV solution coincides with the strong solution emanating from the same initial data as long as the latter exists.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"27 4","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00021-025-00967-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-025-00967-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We define a dissipative measure-valued (DMV) solution to the system of equations governing the motion of a general compressible, viscous, electrically and heat conducting fluid driven by non-conservative boundary conditions. We show the stability of strong solutions to the full compressible magnetohydrodynamic system in a large class of these DMV solutions. In other words, we prove a DMV-strong uniqueness principle: a DMV solution coincides with the strong solution emanating from the same initial data as long as the latter exists.

非保守边界条件下全可压缩磁流体动力系统强解的稳定性
我们定义了由非保守边界条件驱动的一般可压缩、粘性、导电和导热流体运动方程组的耗散测度值(DMV)解。我们在一大类DMV解中展示了全可压缩磁流体动力系统强解的稳定性。换句话说,我们证明了DMV强唯一性原则:只要DMV解存在,DMV解就与由相同初始数据产生的强解重合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
15.40%
发文量
97
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信