Large Time Cumulants of the KPZ Equation on an Interval

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Guillaume Barraquand, Pierre Le Doussal
{"title":"Large Time Cumulants of the KPZ Equation on an Interval","authors":"Guillaume Barraquand,&nbsp;Pierre Le Doussal","doi":"10.1007/s10955-025-03496-9","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the Kardar-Parisi-Zhang equation on the interval [0, <i>L</i>] with Neumann type boundary conditions and boundary parameters <i>u</i>, <i>v</i>. We show that the <i>k</i>-th order cumulant of the height behaves as <span>\\(c_k(L,u,v)\\, t\\)</span> in the large time limit <span>\\(t \\rightarrow +\\infty \\)</span>, and we compute the coefficients <span>\\(c_k(L,u,v)\\)</span>. We obtain an expression for the upper tail large deviation function of the height. We also consider the limit of large <i>L</i>, with <span>\\(u=\\tilde{u}/\\sqrt{L}\\)</span>, <span>\\(u={\\tilde{v}}/\\sqrt{L}\\)</span>, which should give the same quantities for the two parameter family <span>\\(({\\tilde{u}}, {\\tilde{v}})\\)</span> KPZ fixed point on the interval. We employ two complementary methods. On the one hand we adapt to the interval the replica Bethe ansatz method pioneered by Brunet and Derrida for the periodic case. On the other hand, we perform a scaling limit using previous results available for the open ASEP. The latter method allows to express the cumulants of the KPZ equation in terms a functional equation involving an integral operator.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 8","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03496-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the Kardar-Parisi-Zhang equation on the interval [0, L] with Neumann type boundary conditions and boundary parameters uv. We show that the k-th order cumulant of the height behaves as \(c_k(L,u,v)\, t\) in the large time limit \(t \rightarrow +\infty \), and we compute the coefficients \(c_k(L,u,v)\). We obtain an expression for the upper tail large deviation function of the height. We also consider the limit of large L, with \(u=\tilde{u}/\sqrt{L}\), \(u={\tilde{v}}/\sqrt{L}\), which should give the same quantities for the two parameter family \(({\tilde{u}}, {\tilde{v}})\) KPZ fixed point on the interval. We employ two complementary methods. On the one hand we adapt to the interval the replica Bethe ansatz method pioneered by Brunet and Derrida for the periodic case. On the other hand, we perform a scaling limit using previous results available for the open ASEP. The latter method allows to express the cumulants of the KPZ equation in terms a functional equation involving an integral operator.

Abstract Image

区间上KPZ方程的大时间累积量
考虑区间[0,L]上具有Neumann型边界条件和边界参数u, v的karda - paris - zhang方程,证明了高度的k阶累积量在大时限\(t \rightarrow +\infty \)下表现为\(c_k(L,u,v)\, t\),并计算了系数\(c_k(L,u,v)\)。得到了高度的上尾大偏差函数的表达式。我们还考虑了大L的极限,用\(u=\tilde{u}/\sqrt{L}\), \(u={\tilde{v}}/\sqrt{L}\)给出了两个参数族\(({\tilde{u}}, {\tilde{v}})\) KPZ不动点在区间上的相同数量。我们采用两种互补的方法。一方面,我们采用Brunet和Derrida首创的复制Bethe ansatz方法来适应区间的周期性情况。另一方面,我们使用开放ASEP可用的先前结果执行缩放限制。后一种方法允许用包含积分算子的泛函方程来表示KPZ方程的累积量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信