Multi-stimuli-responsive carboxymethyl cellulose/κ-carrageenan nanogels integrated with magnetic graphene oxide for colon-specific delivery of sunitinib
Nuran Işıklan, Harun Aytekin, Ömer Sonkaya, Enes Güncüm
{"title":"Multi-stimuli-responsive carboxymethyl cellulose/κ-carrageenan nanogels integrated with magnetic graphene oxide for colon-specific delivery of sunitinib","authors":"Nuran Işıklan, Harun Aytekin, Ömer Sonkaya, Enes Güncüm","doi":"10.1007/s10570-025-06635-3","DOIUrl":null,"url":null,"abstract":"<div><p>The multi-stimuli-responsive nanohydrogels provide a powerful strategy for enhancing drug utilization, preservation, controlled release, and minimizing systemic toxicity. Herein, we designed and developed a new multi-stimuli-responsive magnetic graphene oxide (MGO) integrated carboxymethyl cellulose/κ-carrageenan (CMC/CG/MGO) nanogels (NGs) for colon-specific delivery of sunitinib (SU). The physicochemical properties of the CMC/CG/MGO NGs were investigated by various analytical techniques of XRD, FTIR, TGA VSM, DLS, BET, and FESEM/TEM. The in-vitro SU release results exhibited that the CMC/CG/MGO NGs have a sustained release behavior with good pH, magnetic field, and near-infrared (NIR) light-dependent properties. The integrated photothermal agent MGO endowed the CMC/CG NGs with efficient photothermal properties, enabling precise SU release control under NIR laser irradiation. The CMC/CG/MGO/SU NGs displayed a good photothermal conversion effect (η = 38.5%). Besides, the CMC/CG/MGO NGs were not cytotoxic (cell viability > 73% at 15.6–500 ppm) for the L929 fibroblast and Caco-2 cell lines. The MTT results also revealed that the CMC/CG/MGO/SU NGs exhibited enhanced anti-cancer activity compared to free SU under NIR laser irradiation. These results highlight the potential of CMC/CG/MGO/SU NGs as a promising candidate for remotely controlled multi-stimuli-responsive drug delivery.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":511,"journal":{"name":"Cellulose","volume":"32 11","pages":"6727 - 6751"},"PeriodicalIF":4.8000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10570-025-06635-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10570-025-06635-3","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0
Abstract
The multi-stimuli-responsive nanohydrogels provide a powerful strategy for enhancing drug utilization, preservation, controlled release, and minimizing systemic toxicity. Herein, we designed and developed a new multi-stimuli-responsive magnetic graphene oxide (MGO) integrated carboxymethyl cellulose/κ-carrageenan (CMC/CG/MGO) nanogels (NGs) for colon-specific delivery of sunitinib (SU). The physicochemical properties of the CMC/CG/MGO NGs were investigated by various analytical techniques of XRD, FTIR, TGA VSM, DLS, BET, and FESEM/TEM. The in-vitro SU release results exhibited that the CMC/CG/MGO NGs have a sustained release behavior with good pH, magnetic field, and near-infrared (NIR) light-dependent properties. The integrated photothermal agent MGO endowed the CMC/CG NGs with efficient photothermal properties, enabling precise SU release control under NIR laser irradiation. The CMC/CG/MGO/SU NGs displayed a good photothermal conversion effect (η = 38.5%). Besides, the CMC/CG/MGO NGs were not cytotoxic (cell viability > 73% at 15.6–500 ppm) for the L929 fibroblast and Caco-2 cell lines. The MTT results also revealed that the CMC/CG/MGO/SU NGs exhibited enhanced anti-cancer activity compared to free SU under NIR laser irradiation. These results highlight the potential of CMC/CG/MGO/SU NGs as a promising candidate for remotely controlled multi-stimuli-responsive drug delivery.
期刊介绍:
Cellulose is an international journal devoted to the dissemination of research and scientific and technological progress in the field of cellulose and related naturally occurring polymers. The journal is concerned with the pure and applied science of cellulose and related materials, and also with the development of relevant new technologies. This includes the chemistry, biochemistry, physics and materials science of cellulose and its sources, including wood and other biomass resources, and their derivatives. Coverage extends to the conversion of these polymers and resources into manufactured goods, such as pulp, paper, textiles, and manufactured as well natural fibers, and to the chemistry of materials used in their processing. Cellulose publishes review articles, research papers, and technical notes.