Zhi Qi, Bo Ren, Yalou Guo, Chuhan Fu, Jinbiao Luo, Sibin Li, Jianbin Qin, Gang Wang, Tao Qi, Paul Webley, Guoping Hu
{"title":"Process simulation and analysis of air separation for oxygen production via fast vacuum swing adsorption","authors":"Zhi Qi, Bo Ren, Yalou Guo, Chuhan Fu, Jinbiao Luo, Sibin Li, Jianbin Qin, Gang Wang, Tao Qi, Paul Webley, Guoping Hu","doi":"10.1007/s10450-025-00646-z","DOIUrl":null,"url":null,"abstract":"<div><p>Fast pressure swing adsorption (FPSA) is an adsorption-based separation process with cycle durations ranging from a few to tens of seconds. While widely used in small-scale oxygen generators, FPSA still holds significant potential for improvement. In this study, we propose and demonstrate a novel rapid vacuum swing adsorption (FVSA) cycle, where adsorption occurs at atmospheric pressure and desorption under vacuum, to enhance small-scale oxygen production from air. A simulated air mixture, containing 78% nitrogen (N<sub>2</sub>), 21% oxygen (O<sub>2</sub>) and 1% argon (Ar), was processed through a dual-column FVSA system using LiLSX zeolite as the adsorbent. A numerical model was developed on Aspen Adsorption and validated against previously reported results. A parametric study was conducted to assess the effects of various operating conditions on separation performance. The results indicate that a low feed flow rate, low desorption pressure, and an optimal length-to-diameter (<i>L/D</i>) ratio improve the separation efficiency. Under operating conditions of 101.1 kPa adsorption pressure, 40.3 kPa desorption pressure, and a feed rate of 47 L/min, the system achieved a 91% O<sub>2</sub> product stream with a 5 L/min flowrate and 44% O<sub>2</sub> recovery. Compared to traditional FPSA, FVSA reduced energy consumption by 13% (39.24 vs. 33.99 kJ·mol<sup>−1</sup>O<sub>2</sub>) and lowered the air-to-oxygen ratio by 25% (14.4 vs. 10.8) while maintaining comparable O<sub>2</sub> purity, demonstrating its potential for more efficient oxygen production.</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"31 6","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10450-025-00646-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10450-025-00646-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Fast pressure swing adsorption (FPSA) is an adsorption-based separation process with cycle durations ranging from a few to tens of seconds. While widely used in small-scale oxygen generators, FPSA still holds significant potential for improvement. In this study, we propose and demonstrate a novel rapid vacuum swing adsorption (FVSA) cycle, where adsorption occurs at atmospheric pressure and desorption under vacuum, to enhance small-scale oxygen production from air. A simulated air mixture, containing 78% nitrogen (N2), 21% oxygen (O2) and 1% argon (Ar), was processed through a dual-column FVSA system using LiLSX zeolite as the adsorbent. A numerical model was developed on Aspen Adsorption and validated against previously reported results. A parametric study was conducted to assess the effects of various operating conditions on separation performance. The results indicate that a low feed flow rate, low desorption pressure, and an optimal length-to-diameter (L/D) ratio improve the separation efficiency. Under operating conditions of 101.1 kPa adsorption pressure, 40.3 kPa desorption pressure, and a feed rate of 47 L/min, the system achieved a 91% O2 product stream with a 5 L/min flowrate and 44% O2 recovery. Compared to traditional FPSA, FVSA reduced energy consumption by 13% (39.24 vs. 33.99 kJ·mol−1O2) and lowered the air-to-oxygen ratio by 25% (14.4 vs. 10.8) while maintaining comparable O2 purity, demonstrating its potential for more efficient oxygen production.
期刊介绍:
The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news.
Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design.
Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.