Development and Characterization of a Cryogenic Tuned Amplifier for Penning Trap Applications

IF 1.4 3区 物理与天体物理 Q4 PHYSICS, APPLIED
Niraj Chaddha, A. K. Sikdar, J. Nandi, C. H. Vyshnav, M. Chatterjee, P. Das, A. Ray
{"title":"Development and Characterization of a Cryogenic Tuned Amplifier for Penning Trap Applications","authors":"Niraj Chaddha,&nbsp;A. K. Sikdar,&nbsp;J. Nandi,&nbsp;C. H. Vyshnav,&nbsp;M. Chatterjee,&nbsp;P. Das,&nbsp;A. Ray","doi":"10.1007/s10909-025-03309-z","DOIUrl":null,"url":null,"abstract":"<div><p>A two-stage tuned amplifier has been developed and characterised for operation at cryogenic temperatures for Penning Trap application. Two pHEMT devices were tested at 300 K, 77 K and 4.2 K for their DC and AC characteristics. The developed amplifier has shown an amplification of 40 dB at a quiescent power consumption of ~ 1 mW at liquid helium temperature. Considering the feeble intensity of the image charge signal from Penning trap, the input impedance of the first stage amplifier is kept high whereas the output impedance of the second stage is kept 50 Ω for impedance matching with the transmission line. The bandwidth was ~ 200 kHz with the centre frequency around 40 MHz to match with the axial frequency of the electrons confined in the Penning trap. The amplifier was tested at 5 T magnetic field and it showed similar performance as in no field condition. The signal of trapped electrons, in a Penning trap at 4.2 K, was detected using this amplifier through the resonance absorption technique, confirming its suitability for the system.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":"220 3-6","pages":"281 - 293"},"PeriodicalIF":1.4000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10909-025-03309-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10909-025-03309-z","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A two-stage tuned amplifier has been developed and characterised for operation at cryogenic temperatures for Penning Trap application. Two pHEMT devices were tested at 300 K, 77 K and 4.2 K for their DC and AC characteristics. The developed amplifier has shown an amplification of 40 dB at a quiescent power consumption of ~ 1 mW at liquid helium temperature. Considering the feeble intensity of the image charge signal from Penning trap, the input impedance of the first stage amplifier is kept high whereas the output impedance of the second stage is kept 50 Ω for impedance matching with the transmission line. The bandwidth was ~ 200 kHz with the centre frequency around 40 MHz to match with the axial frequency of the electrons confined in the Penning trap. The amplifier was tested at 5 T magnetic field and it showed similar performance as in no field condition. The signal of trapped electrons, in a Penning trap at 4.2 K, was detected using this amplifier through the resonance absorption technique, confirming its suitability for the system.

用于彭宁阱的低温调谐放大器的研制与特性研究
一种两级调谐放大器已经开发和表征工作在低温彭宁陷阱应用。分别在300 K、77 K和4.2 K下测试了两种pHEMT器件的直流和交流特性。所开发的放大器在液氦温度下,静态功耗约为1 mW,放大40 dB。考虑到来自Penning陷阱的图像电荷信号强度微弱,为了与传输线阻抗匹配,将第一级放大器的输入阻抗保持较高,而将第二级放大器的输出阻抗保持50 Ω。带宽约为200 kHz,中心频率约为40 MHz,与Penning阱中电子的轴向频率相匹配。该放大器在5t磁场条件下进行了测试,其性能与无磁场条件下相似。利用该放大器通过共振吸收技术检测了在4.2 K的Penning陷阱中捕获电子的信号,证实了该放大器适用于该系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Low Temperature Physics
Journal of Low Temperature Physics 物理-物理:凝聚态物理
CiteScore
3.30
自引率
25.00%
发文量
245
审稿时长
1 months
期刊介绍: The Journal of Low Temperature Physics publishes original papers and review articles on all areas of low temperature physics and cryogenics, including theoretical and experimental contributions. Subject areas include: Quantum solids, liquids and gases; Superfluidity; Superconductivity; Condensed matter physics; Experimental techniques; The Journal encourages the submission of Rapid Communications and Special Issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信