Absolute Continuity of the Integrated Density of States in the Localized Regime

IF 2.6 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Jing Wang, Xu Xu, Jiangong You, Qi Zhou
{"title":"Absolute Continuity of the Integrated Density of States in the Localized Regime","authors":"Jing Wang,&nbsp;Xu Xu,&nbsp;Jiangong You,&nbsp;Qi Zhou","doi":"10.1007/s00220-025-05406-2","DOIUrl":null,"url":null,"abstract":"<div><p>We establish the absolute continuity of the integrated density of states (IDS) for quasi-periodic Schrödinger operators with large trigonometric potentials and Diophantine frequencies. This partially solves Eliasson’s open problem in 2002. Furthermore, this result can be extended to a class of quasi-periodic long-range operators on <span>\\(\\ell ^2(\\mathbb {Z}^d)\\)</span>. Our proof is based on stratified quantitative almost reducibility results of dual cocycles. Specifically, we prove that a generic analytic one-parameter family of cocycles, sufficiently close to constant coefficients, is reducible except for a zero Hausdorff dimension set of parameters. This result affirms Eliasson’s conjecture in 2017.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 9","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05406-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We establish the absolute continuity of the integrated density of states (IDS) for quasi-periodic Schrödinger operators with large trigonometric potentials and Diophantine frequencies. This partially solves Eliasson’s open problem in 2002. Furthermore, this result can be extended to a class of quasi-periodic long-range operators on \(\ell ^2(\mathbb {Z}^d)\). Our proof is based on stratified quantitative almost reducibility results of dual cocycles. Specifically, we prove that a generic analytic one-parameter family of cocycles, sufficiently close to constant coefficients, is reducible except for a zero Hausdorff dimension set of parameters. This result affirms Eliasson’s conjecture in 2017.

局域状态积分密度的绝对连续性
我们建立了具有大三角势和丢音频率的拟周期Schrödinger算子的态积分密度的绝对连续性。这在一定程度上解决了埃利亚松在2002年提出的开放性问题。进一步,该结果可以推广到\(\ell ^2(\mathbb {Z}^d)\)上的一类拟周期远程算子。我们的证明是基于对偶环的分层定量几乎可约性结果。具体地说,我们证明了除参数的零Hausdorff维集外,充分接近常系数的一般解析单参数环族是可约的。这一结果证实了埃利亚松在2017年的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信