{"title":"\\(T\\overline{T}\\) deformation: Introduction and some recent advances","authors":"Song He, Yi Li, Hao Ouyang, Yuan Sun","doi":"10.1007/s11433-025-2708-2","DOIUrl":null,"url":null,"abstract":"<div><p>This review explores recent advances in the theory of <span>\\(T\\overline{T}\\)</span> deformation, an irrelevant yet solvable deformation of quantum field theories defined via the quadratic form of the energy-momentum tensor. It addresses classical and quantum aspects, highlighting significant developments across various fields, including field theory, holography, and string theory. Classically, <span>\\(T\\overline{T}\\)</span> deformation manifests through multiple geometric interpretations, notably random geometry, Jackiw-Teitelboim-like gravity, and uniform light-cone gauge frameworks. For quantum aspects, the deformation introduces notable features such as non-locality, UV-IR mixing, solvable renormalization structures, and intriguing modifications to correlation functions and entanglement properties. Furthermore, the paper examines the profound relationship between <span>\\(T\\overline{T}\\)</span> deformation and holography, particularly within the mixed boundary conditions/cutoff AdS holography proposal and holographic entanglement entropy. Connections to string theory through single-trace deformations and their holographic duals further reveal the deformed structure of the worldsheet. This review synthesizes recent developments and outlines potential directions for future research in the study of <span>\\(T\\overline{T}\\)</span>-like deformation.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 10","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11433-025-2708-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This review explores recent advances in the theory of \(T\overline{T}\) deformation, an irrelevant yet solvable deformation of quantum field theories defined via the quadratic form of the energy-momentum tensor. It addresses classical and quantum aspects, highlighting significant developments across various fields, including field theory, holography, and string theory. Classically, \(T\overline{T}\) deformation manifests through multiple geometric interpretations, notably random geometry, Jackiw-Teitelboim-like gravity, and uniform light-cone gauge frameworks. For quantum aspects, the deformation introduces notable features such as non-locality, UV-IR mixing, solvable renormalization structures, and intriguing modifications to correlation functions and entanglement properties. Furthermore, the paper examines the profound relationship between \(T\overline{T}\) deformation and holography, particularly within the mixed boundary conditions/cutoff AdS holography proposal and holographic entanglement entropy. Connections to string theory through single-trace deformations and their holographic duals further reveal the deformed structure of the worldsheet. This review synthesizes recent developments and outlines potential directions for future research in the study of \(T\overline{T}\)-like deformation.
期刊介绍:
Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.
Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index.
Categories of articles:
Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested.
Research papers report on important original results in all areas of physics, mechanics and astronomy.
Brief reports present short reports in a timely manner of the latest important results.