Surface Extraction for Industrial CT Based on Surface Tracking

IF 2.4 3区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Lin Xue, Zhaoxiang Li
{"title":"Surface Extraction for Industrial CT Based on Surface Tracking","authors":"Lin Xue,&nbsp;Zhaoxiang Li","doi":"10.1007/s10921-025-01223-8","DOIUrl":null,"url":null,"abstract":"<div><p>To address the precision and adaptability requirements for surface extraction in industrial computed tomography (CT) reverse engineering, we proposes a subvoxel-accuracy surface reconstruction method that integrates surface tracking algorithms with analytical gradient computation. Building upon the Marching Triangles framework, our method introduces an adaptive mesh growth strategy driven by analytical curvature and enhance edge-region extraction through curvature consistency verification. We develop a dual-stage projection mechanism, utilizing gray-value coarse projection in the initial stage followed by second-order gradient refinement. Experimental results demonstrate that compared to traditional Marching Cubes methods, our approach produces higher-quality triangular meshes with reduced vertex counts. When compared with conventional threshold-based algorithms, the proposed method shows superior surface accuracy and significant advantages for industrial metrology CT applications.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"44 3","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-025-01223-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

To address the precision and adaptability requirements for surface extraction in industrial computed tomography (CT) reverse engineering, we proposes a subvoxel-accuracy surface reconstruction method that integrates surface tracking algorithms with analytical gradient computation. Building upon the Marching Triangles framework, our method introduces an adaptive mesh growth strategy driven by analytical curvature and enhance edge-region extraction through curvature consistency verification. We develop a dual-stage projection mechanism, utilizing gray-value coarse projection in the initial stage followed by second-order gradient refinement. Experimental results demonstrate that compared to traditional Marching Cubes methods, our approach produces higher-quality triangular meshes with reduced vertex counts. When compared with conventional threshold-based algorithms, the proposed method shows superior surface accuracy and significant advantages for industrial metrology CT applications.

Abstract Image

基于表面跟踪的工业CT表面提取
为了解决工业计算机断层扫描(CT)逆向工程中表面提取的精度和适应性要求,我们提出了一种结合表面跟踪算法和解析梯度计算的亚体素精度表面重建方法。该方法在推进三角形框架的基础上,引入了一种由解析曲率驱动的自适应网格增长策略,并通过曲率一致性验证增强了边缘区域的提取。我们开发了一种双阶段投影机制,在初始阶段利用灰度值粗投影,然后进行二阶梯度细化。实验结果表明,与传统的Marching Cubes方法相比,我们的方法可以在减少顶点数的情况下产生更高质量的三角形网格。与传统的基于阈值的算法相比,该方法具有更好的表面精度和显著的工业计量CT应用优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nondestructive Evaluation
Journal of Nondestructive Evaluation 工程技术-材料科学:表征与测试
CiteScore
4.90
自引率
7.10%
发文量
67
审稿时长
9 months
期刊介绍: Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信