Sharp Hadamard Local Well-Posedness, Enhanced Uniqueness and Pointwise Continuation Criterion for the Incompressible Free Boundary Euler Equations

IF 2.6 1区 数学 Q1 MATHEMATICS
Mihaela Ifrim, Ben Pineau, Daniel Tataru, Mitchell A. Taylor
{"title":"Sharp Hadamard Local Well-Posedness, Enhanced Uniqueness and Pointwise Continuation Criterion for the Incompressible Free Boundary Euler Equations","authors":"Mihaela Ifrim,&nbsp;Ben Pineau,&nbsp;Daniel Tataru,&nbsp;Mitchell A. Taylor","doi":"10.1007/s40818-025-00204-4","DOIUrl":null,"url":null,"abstract":"<div><p>We provide a complete local well-posedness theory in <i>H</i><sup><i>s</i></sup> based Sobolev spaces for the free boundary incompressible Euler equations with zero surface tension on a connected fluid domain. Our well-posedness theory includes: (i) Local well-posedness in the Hadamard sense, i.e., local existence, uniqueness, and the first proof of continuous dependence on the data, all in low regularity Sobolev spaces; (ii) Enhanced uniqueness: Our uniqueness result holds at the level of the Lipschitz norm of the velocity and the <span>\\(C^{1,\\frac{1}{2}}\\)</span> regularity of the free surface; (iii) Stability bounds: We construct a nonlinear functional which measures, in a suitable sense, the distance between two solutions (even when defined on different domains) and we show that this distance is propagated by the flow; (iv) Energy estimates: We prove refined, essentially scale invariant energy estimates for solutions, relying on a newly constructed family of elliptic estimates; (v) Continuation criterion: We give the first proof of a sharp continuation criterion in the physically relevant pointwise norms, at the level of scaling. In essence, we show that solutions can be continued as long as the velocity is in <span>\\(L_T^1W^{1,\\infty}\\)</span> and the free surface is in <span>\\(L_T^1C^{1,\\frac{1}{2}}\\)</span>, which is at the same level as the Beale-Kato-Majda criterion for the boundaryless case; (vi) A novel proof of the construction of regular solutions. Our entire approach is in the Eulerian framework and can be adapted to work in more general fluid domains.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"11 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40818-025-00204-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-025-00204-4","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We provide a complete local well-posedness theory in Hs based Sobolev spaces for the free boundary incompressible Euler equations with zero surface tension on a connected fluid domain. Our well-posedness theory includes: (i) Local well-posedness in the Hadamard sense, i.e., local existence, uniqueness, and the first proof of continuous dependence on the data, all in low regularity Sobolev spaces; (ii) Enhanced uniqueness: Our uniqueness result holds at the level of the Lipschitz norm of the velocity and the \(C^{1,\frac{1}{2}}\) regularity of the free surface; (iii) Stability bounds: We construct a nonlinear functional which measures, in a suitable sense, the distance between two solutions (even when defined on different domains) and we show that this distance is propagated by the flow; (iv) Energy estimates: We prove refined, essentially scale invariant energy estimates for solutions, relying on a newly constructed family of elliptic estimates; (v) Continuation criterion: We give the first proof of a sharp continuation criterion in the physically relevant pointwise norms, at the level of scaling. In essence, we show that solutions can be continued as long as the velocity is in \(L_T^1W^{1,\infty}\) and the free surface is in \(L_T^1C^{1,\frac{1}{2}}\), which is at the same level as the Beale-Kato-Majda criterion for the boundaryless case; (vi) A novel proof of the construction of regular solutions. Our entire approach is in the Eulerian framework and can be adapted to work in more general fluid domains.

不可压缩自由边界欧拉方程的Sharp Hadamard局部适定性、增强唯一性及点向延拓准则
给出了连通流体域上具有零表面张力的自由边界不可压缩欧拉方程在基于Hs的Sobolev空间中的完备局域适定性理论。我们的适定性理论包括:(i) Hadamard意义上的局部适定性,即在低正则Sobolev空间中的局部存在性、唯一性和对数据连续依赖性的第一次证明;(ii)增强唯一性:我们的唯一性结果在速度的Lipschitz范数和自由表面的\(C^{1,\frac{1}{2}}\)规则性水平上成立;(iii)稳定性界:我们构造了一个非线性泛函,在适当的意义上测量两个解之间的距离(即使在不同的域上定义),并且我们表明这个距离是由流传播的;(iv)能量估计:我们证明了改进的,基本上是尺度不变的能量估计的解决方案,依靠一个新构造的椭圆估计族;(v)延拓准则:我们在标度水平上给出了物理上相关的逐点规范的锐延拓准则的第一个证明。实质上,我们证明了只要速度在\(L_T^1W^{1,\infty}\),自由表面在\(L_T^1C^{1,\frac{1}{2}}\),解就可以连续,这与无边界情况下的Beale-Kato-Majda判据处于同一水平;正则解构造的一个新证明。我们的整个方法是在欧拉框架中,可以适用于更一般的流体领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信