Luan Coelho Vieira da Silva, Júlio de Castro Vargas Fernandes, Felipe Bevilaqua Foldes Guimarães, Pedro Henrique Braga Lisboa, Carlos Eduardo Menezes dos Anjos, Thais Fernandes de Matos, Marcelo Ramalho Albuquerque, Rodrigo Surmas, Alexandre Gonçalves Evsukoff
{"title":"Entropy-Based Measure of Rock Sample Heterogeneity Derived from Micro-CT Images","authors":"Luan Coelho Vieira da Silva, Júlio de Castro Vargas Fernandes, Felipe Bevilaqua Foldes Guimarães, Pedro Henrique Braga Lisboa, Carlos Eduardo Menezes dos Anjos, Thais Fernandes de Matos, Marcelo Ramalho Albuquerque, Rodrigo Surmas, Alexandre Gonçalves Evsukoff","doi":"10.1007/s11242-025-02183-3","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents an automated method for objectively measuring rock heterogeneity via raw X-ray micro-computed tomography (micro-CT) images, thereby addressing the limitations of traditional methods, which are time-consuming, costly, and subjective. Unlike approaches that rely on image segmentation, the proposed method processes micro-CT images directly, identifying textural heterogeneity. The image is partitioned into subvolumes, where attributes are calculated for each one, with entropy serving as a measure of uncertainty. This method adapts to varying sample characteristics and enables meaningful comparisons across distinct sets of samples. It was applied to a dataset consisting of 4935 images of cylindrical plug samples derived from Brazilian reservoirs. The results showed that the selected attributes play a key role in producing desirable outcomes, such as strong correlations with structural heterogeneity. To assess the effectiveness of our method, we used evaluations provided by four experts who classified 175 samples as either heterogeneous or homogeneous, where each expert assessed a different number of samples. One of the presented attributes demonstrated a statistically significant difference between the homogeneous and heterogeneous samples labelled by all the experts, whereas the other two attributes yielded nonsignificant differences for three out of the four experts. The method was shown to better align with the expert choices than traditional textural attributes known for extracting heterogeneous properties from images. This textural heterogeneity measure provides an additional parameter that can assist in rock characterization, and the automated approach ensures easy reproduction and high cost-effectiveness.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"152 7","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport in Porous Media","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11242-025-02183-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents an automated method for objectively measuring rock heterogeneity via raw X-ray micro-computed tomography (micro-CT) images, thereby addressing the limitations of traditional methods, which are time-consuming, costly, and subjective. Unlike approaches that rely on image segmentation, the proposed method processes micro-CT images directly, identifying textural heterogeneity. The image is partitioned into subvolumes, where attributes are calculated for each one, with entropy serving as a measure of uncertainty. This method adapts to varying sample characteristics and enables meaningful comparisons across distinct sets of samples. It was applied to a dataset consisting of 4935 images of cylindrical plug samples derived from Brazilian reservoirs. The results showed that the selected attributes play a key role in producing desirable outcomes, such as strong correlations with structural heterogeneity. To assess the effectiveness of our method, we used evaluations provided by four experts who classified 175 samples as either heterogeneous or homogeneous, where each expert assessed a different number of samples. One of the presented attributes demonstrated a statistically significant difference between the homogeneous and heterogeneous samples labelled by all the experts, whereas the other two attributes yielded nonsignificant differences for three out of the four experts. The method was shown to better align with the expert choices than traditional textural attributes known for extracting heterogeneous properties from images. This textural heterogeneity measure provides an additional parameter that can assist in rock characterization, and the automated approach ensures easy reproduction and high cost-effectiveness.
期刊介绍:
-Publishes original research on physical, chemical, and biological aspects of transport in porous media-
Papers on porous media research may originate in various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering)-
Emphasizes theory, (numerical) modelling, laboratory work, and non-routine applications-
Publishes work of a fundamental nature, of interest to a wide readership, that provides novel insight into porous media processes-
Expanded in 2007 from 12 to 15 issues per year.
Transport in Porous Media publishes original research on physical and chemical aspects of transport phenomena in rigid and deformable porous media. These phenomena, occurring in single and multiphase flow in porous domains, can be governed by extensive quantities such as mass of a fluid phase, mass of component of a phase, momentum, or energy. Moreover, porous medium deformations can be induced by the transport phenomena, by chemical and electro-chemical activities such as swelling, or by external loading through forces and displacements. These porous media phenomena may be studied by researchers from various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering).