{"title":"Rarefaction slip phenomena within a viscous disk pump with molecular mean free path sized surface roughness elements","authors":"Phil Ligrani, Adrian Pippert, Bernhard Weigand","doi":"10.1007/s10404-025-02813-8","DOIUrl":null,"url":null,"abstract":"<div><p>The present investigation considers roughness elements which are generally very small relative to the principal flow length scale, and about the same order of magnitude as the molecular mean free path of helium. Significantly different rarefaction flow behavior is produced using three roughness arrangements, which have different character and structure in regard to distributions of larger ridges, as well as sizes, shapes, and distributions of smaller roughness elements. Measured distributions of slip velocity and associated tangential momentum accommodation coefficients are provided as they vary with Knudsen number Kn, disk rotation speed ω, and mean roughness height Ra. Results are given for helium and air as working fluids, three different surface roughness types, different disk rotational speeds ω, different volumetric flow rates, and different flow passage heights h. Knudsen number values range from 5.21 × 10<sup>–3</sup> to 2.15 × 10<sup>–2</sup> for helium, and from 1.82 × 10<sup>–3</sup> to 7.53 × 10<sup>–3</sup> for air. The device employed to produce these data is a viscous disk pump (VDP). With smallest mean roughness height, all of the elements on the surface are about the same size, which is about the same as the molecular mean free path of helium, and a larger percentage of molecules are subject to specular reflection resulting in substantial slip velocity magnitudes. With largest mean roughness height, a diversity of roughness element sizes, shapes, and heights is present, and a larger percentage of molecules are subject to diffuse reflection resulting in relatively small slip velocity magnitudes.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"29 7","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-025-02813-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
The present investigation considers roughness elements which are generally very small relative to the principal flow length scale, and about the same order of magnitude as the molecular mean free path of helium. Significantly different rarefaction flow behavior is produced using three roughness arrangements, which have different character and structure in regard to distributions of larger ridges, as well as sizes, shapes, and distributions of smaller roughness elements. Measured distributions of slip velocity and associated tangential momentum accommodation coefficients are provided as they vary with Knudsen number Kn, disk rotation speed ω, and mean roughness height Ra. Results are given for helium and air as working fluids, three different surface roughness types, different disk rotational speeds ω, different volumetric flow rates, and different flow passage heights h. Knudsen number values range from 5.21 × 10–3 to 2.15 × 10–2 for helium, and from 1.82 × 10–3 to 7.53 × 10–3 for air. The device employed to produce these data is a viscous disk pump (VDP). With smallest mean roughness height, all of the elements on the surface are about the same size, which is about the same as the molecular mean free path of helium, and a larger percentage of molecules are subject to specular reflection resulting in substantial slip velocity magnitudes. With largest mean roughness height, a diversity of roughness element sizes, shapes, and heights is present, and a larger percentage of molecules are subject to diffuse reflection resulting in relatively small slip velocity magnitudes.
期刊介绍:
Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include:
1.000 Fundamental principles of micro- and nanoscale phenomena like,
flow, mass transport and reactions
3.000 Theoretical models and numerical simulation with experimental and/or analytical proof
4.000 Novel measurement & characterization technologies
5.000 Devices (actuators and sensors)
6.000 New unit-operations for dedicated microfluidic platforms
7.000 Lab-on-a-Chip applications
8.000 Microfabrication technologies and materials
Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).