Modified Quantum Oscillator Field in 4D Wormhole With a Cosmic String

IF 1.8 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Faizuddin Ahmed
{"title":"Modified Quantum Oscillator Field in 4D Wormhole With a Cosmic String","authors":"Faizuddin Ahmed","doi":"10.1007/s00601-025-02000-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we explore quantum dynamics of relativistic quantum oscillator field within the framework of generalized Klein-Gordon oscillator in the context of four-dimensional wormhole with a cosmic string. The considered space-time is an example of Morris-Thorne-type traversable wormhole with topological defect. We derive a radial second-order differential equation of the generalized Klein-Gordon oscillator equation and obtain analytical solution through special functions by choosing different potential functions. In this study, we consider two distinct functions: a Coulomb- and Cornell-like potential form and solve the differential equation. As particular case, we presented the ground state energy level and the corresponding wave function of quantum oscillator fields. In fact, it is shown that the wormhole throat radius and cosmic string influences the eigenvalue solution compared to flat space results. The presence of topological defect of cosmic string breaks the degeneracy of the spectra of energy.</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":"66 3","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Few-Body Systems","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00601-025-02000-z","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we explore quantum dynamics of relativistic quantum oscillator field within the framework of generalized Klein-Gordon oscillator in the context of four-dimensional wormhole with a cosmic string. The considered space-time is an example of Morris-Thorne-type traversable wormhole with topological defect. We derive a radial second-order differential equation of the generalized Klein-Gordon oscillator equation and obtain analytical solution through special functions by choosing different potential functions. In this study, we consider two distinct functions: a Coulomb- and Cornell-like potential form and solve the differential equation. As particular case, we presented the ground state energy level and the corresponding wave function of quantum oscillator fields. In fact, it is shown that the wormhole throat radius and cosmic string influences the eigenvalue solution compared to flat space results. The presence of topological defect of cosmic string breaks the degeneracy of the spectra of energy.

带有宇宙弦的4D虫洞中修正的量子振子场
本文在具有宇宙弦的四维虫洞的背景下,在广义Klein-Gordon振子的框架下,探讨相对论性量子振子场的量子动力学。所考虑的时空是具有拓扑缺陷的morris - thorne型可穿越虫洞的一个例子。导出广义Klein-Gordon振子方程的径向二阶微分方程,并通过选择不同的势函数,通过特殊函数得到解析解。在这项研究中,我们考虑两个不同的函数:库仑和康奈尔势形式,并求解微分方程。作为特殊情况,我们给出了量子振荡场的基态能级和相应的波函数。事实上,与平坦空间的结果相比,虫洞喉部半径和宇宙弦对特征值解有影响。宇宙弦拓扑缺陷的存在打破了能量谱的简并性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Few-Body Systems
Few-Body Systems 物理-物理:综合
CiteScore
2.90
自引率
18.80%
发文量
64
审稿时长
6-12 weeks
期刊介绍: The journal Few-Body Systems presents original research work – experimental, theoretical and computational – investigating the behavior of any classical or quantum system consisting of a small number of well-defined constituent structures. The focus is on the research methods, properties, and results characteristic of few-body systems. Examples of few-body systems range from few-quark states, light nuclear and hadronic systems; few-electron atomic systems and small molecules; and specific systems in condensed matter and surface physics (such as quantum dots and highly correlated trapped systems), up to and including large-scale celestial structures. Systems for which an equivalent one-body description is available or can be designed, and large systems for which specific many-body methods are needed are outside the scope of the journal. The journal is devoted to the publication of all aspects of few-body systems research and applications. While concentrating on few-body systems well-suited to rigorous solutions, the journal also encourages interdisciplinary contributions that foster common approaches and insights, introduce and benchmark the use of novel tools (e.g. machine learning) and develop relevant applications (e.g. few-body aspects in quantum technologies).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信