{"title":"Development of a graphene-based bimetallic catalyst for enhanced voltammetric detection of sulfafurazole antimicrobial agents","authors":"Mohammad Khazaei Nejad, Hassan Ali Zamani","doi":"10.1007/s42823-025-00882-x","DOIUrl":null,"url":null,"abstract":"<div><p>This research developed a highly efficient voltammetric sensor, utilizing a carbon paste electrode (CPE) integrated with a novel ZnO-doped Pd–Pt bimetallic catalyst decorated with reduced graphene oxide (ZnO-Pt@Pd/rGO) and 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([EMIM][Tf2N]), for the precise determination of sulfafurazole in real dextrose saline and tablet samples. The ZnO-Pt@Pd/rGO nanocomposite was synthesized through a one-stage synthesis process and characterized using SEM and EDS techniques. The comparison of the ZnO-Pt@Pd/rGO/[EMIM][Tf2N]/CPE with unmodified CPE, ZnO-Pt@Pd/rGO/CPE, and [EMIM][Tf2N]/CPE confirms the synergic effect of ZnO-Pt@Pd/rGO and [EMIM][Tf2N] as two conductive catalysts in fabrication of new sensor. The resulting sensor exhibited remarkable stability over a period of 2 months without compromising its efficiency for sulfafurazole detection. With a linear range of 0.001–250 µM (<i>R</i><sup>2</sup> = 0.9971) and LOD of 0.4 nM, ZnO-Pt@Pd/rGO/[EMIM][Tf2N]/CPE showcased exceptional accuracy and precision in the monitoring of sulfafurazole. Validation using real tablet and dextrose saline samples confirmed the sensor's outstanding capability in determining sulfafurazole, with relative recoveries ranging from 98.92 to 103.8% offering a promising solution for reliable sulfafurazole analysis in diverse pharmaceutical samples.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"35 4","pages":"1667 - 1675"},"PeriodicalIF":5.8000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42823-025-00882-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This research developed a highly efficient voltammetric sensor, utilizing a carbon paste electrode (CPE) integrated with a novel ZnO-doped Pd–Pt bimetallic catalyst decorated with reduced graphene oxide (ZnO-Pt@Pd/rGO) and 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([EMIM][Tf2N]), for the precise determination of sulfafurazole in real dextrose saline and tablet samples. The ZnO-Pt@Pd/rGO nanocomposite was synthesized through a one-stage synthesis process and characterized using SEM and EDS techniques. The comparison of the ZnO-Pt@Pd/rGO/[EMIM][Tf2N]/CPE with unmodified CPE, ZnO-Pt@Pd/rGO/CPE, and [EMIM][Tf2N]/CPE confirms the synergic effect of ZnO-Pt@Pd/rGO and [EMIM][Tf2N] as two conductive catalysts in fabrication of new sensor. The resulting sensor exhibited remarkable stability over a period of 2 months without compromising its efficiency for sulfafurazole detection. With a linear range of 0.001–250 µM (R2 = 0.9971) and LOD of 0.4 nM, ZnO-Pt@Pd/rGO/[EMIM][Tf2N]/CPE showcased exceptional accuracy and precision in the monitoring of sulfafurazole. Validation using real tablet and dextrose saline samples confirmed the sensor's outstanding capability in determining sulfafurazole, with relative recoveries ranging from 98.92 to 103.8% offering a promising solution for reliable sulfafurazole analysis in diverse pharmaceutical samples.
期刊介绍:
Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.