Substitutions and Cantor real numeration systems

IF 0.6 3区 数学 Q3 MATHEMATICS
É. Charlier, C. Cisternino, Z. Masáková, E. Pelantová
{"title":"Substitutions and Cantor real numeration systems","authors":"É. Charlier,&nbsp;C. Cisternino,&nbsp;Z. Masáková,&nbsp;E. Pelantová","doi":"10.1007/s10474-025-01535-1","DOIUrl":null,"url":null,"abstract":"<div><p>We consider Cantor real numeration system as a frame in which every non-negative real number has a positional representation. The system is defined using a bi-infinite sequence <span>\\(B=(\\beta_n)_{n\\in\\mathbb{Z}}\\)</span> of real numbers greater than one. We introduce the set of <i>B</i>-integers and code the sequence of gaps between consecutive <i>B</i>-integers by a symbolic sequence in general over the alphabet <span>\\(\\mathbb{N}\\)</span>. We show that this sequence is <i>S</i>-adic. We focus on alternate base systems, where the sequence <i>B</i> of bases is periodic, and characterize alternate bases <i>B</i> in which <i>B</i>-integers can be coded by using a symbolic sequence <span>\\(\\bf{v}_{\\it B}\\)</span> over a finite alphabet. With these so-called Parry alternate bases we associate some morphisms and show that <span>\\(\\bf{v}_{\\it B}\\)</span> is a fixed point of their composition. We then provide two classes of Parry alternate bases <i>B</i> generating sturmian fixed points. The paper generalizes results of Fabre and Burdík et al. obtained for the Rényi numerations systems, i.e., in the case when the Cantor base <i>B</i> is a constant sequence.</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"176 1","pages":"15 - 47"},"PeriodicalIF":0.6000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-025-01535-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider Cantor real numeration system as a frame in which every non-negative real number has a positional representation. The system is defined using a bi-infinite sequence \(B=(\beta_n)_{n\in\mathbb{Z}}\) of real numbers greater than one. We introduce the set of B-integers and code the sequence of gaps between consecutive B-integers by a symbolic sequence in general over the alphabet \(\mathbb{N}\). We show that this sequence is S-adic. We focus on alternate base systems, where the sequence B of bases is periodic, and characterize alternate bases B in which B-integers can be coded by using a symbolic sequence \(\bf{v}_{\it B}\) over a finite alphabet. With these so-called Parry alternate bases we associate some morphisms and show that \(\bf{v}_{\it B}\) is a fixed point of their composition. We then provide two classes of Parry alternate bases B generating sturmian fixed points. The paper generalizes results of Fabre and Burdík et al. obtained for the Rényi numerations systems, i.e., in the case when the Cantor base B is a constant sequence.

代入与康托实数系统
我们把康托实数系统看作一个框架,在这个框架中,每一个非负实数都有一个位置表示。该系统是用大于1的实数的双无穷序列\(B=(\beta_n)_{n\in\mathbb{Z}}\)来定义的。我们引入b -整数集,并通过在字母表\(\mathbb{N}\)上的一般符号序列对连续b -整数之间的间隔序列进行编码。我们证明了这个序列是s进的。我们关注交替基系统,其中基序列B是周期性的,并描述了交替基B,其中B整数可以通过在有限字母上使用符号序列\(\bf{v}_{\it B}\)进行编码。对于这些所谓的Parry交替碱基,我们将一些词态联系起来,并表明\(\bf{v}_{\it B}\)是它们组成的一个固定点。然后,我们提供了两类生成sturmian不动点的Parry备用基B。本文推广了Fabre和Burdík等人在rsamnyi计算系统,即当Cantor基B为常数列的情况下得到的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信