On Wielandt's zipper lemma and \(\sigma\)-subnormal subgroups of finite groups

IF 0.6 3区 数学 Q3 MATHEMATICS
F. Aseeri, J. Kaspczyk
{"title":"On Wielandt's zipper lemma and \\(\\sigma\\)-subnormal subgroups of finite groups","authors":"F. Aseeri,&nbsp;J. Kaspczyk","doi":"10.1007/s10474-025-01531-5","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\mathbb{P}\\)</span> denote the set of all prime numbers, <i>I</i> be a set and <span>\\(\\sigma = \\lbrace \\sigma_i \\mid i \\in I \\rbrace\\)</span> be a partition of <span>\\(\\mathbb{P}\\)</span>. A subgroup <i>H</i> of a finite group <i>G</i> is said to be <span>\\(\\sigma\\)</span>-<i>subnormal</i> in <i>G</i> if there is a chain <span>\\(H = H_0 \\le H_1 \\le \\dots \\le H_n = G\\)</span> of subgroups of <i>G</i> such that, for each <span>\\(1 \\le j \\le n\\)</span>, the subgroup <span>\\(H_{j-1}\\)</span> is normal in <i>H</i><sub><i>j</i></sub> or <span>\\(H_j/(H_{j-1})_{H_j}\\)</span> is a <span>\\(\\sigma_i\\)</span>-group for some <span>\\(i \\in I\\)</span>. If <span>\\(\\sigma\\)</span> is the partition of <span>\\(\\mathbb{P}\\)</span> into subsets of size one, then the concept of <span>\\(\\sigma\\)</span>-subnormality reduces to the familiar concept of subnormality. In recent years, many results about subnormal subgroups have been extended to results about <span>\\(\\sigma\\)</span>-subnormal subgroups. This line of research is continued in the present note by proving a <span>\\(\\sigma\\)</span>-version of Wielandt's zipper lemma.</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"176 1","pages":"258 - 263"},"PeriodicalIF":0.6000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-025-01531-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\mathbb{P}\) denote the set of all prime numbers, I be a set and \(\sigma = \lbrace \sigma_i \mid i \in I \rbrace\) be a partition of \(\mathbb{P}\). A subgroup H of a finite group G is said to be \(\sigma\)-subnormal in G if there is a chain \(H = H_0 \le H_1 \le \dots \le H_n = G\) of subgroups of G such that, for each \(1 \le j \le n\), the subgroup \(H_{j-1}\) is normal in Hj or \(H_j/(H_{j-1})_{H_j}\) is a \(\sigma_i\)-group for some \(i \in I\). If \(\sigma\) is the partition of \(\mathbb{P}\) into subsets of size one, then the concept of \(\sigma\)-subnormality reduces to the familiar concept of subnormality. In recent years, many results about subnormal subgroups have been extended to results about \(\sigma\)-subnormal subgroups. This line of research is continued in the present note by proving a \(\sigma\)-version of Wielandt's zipper lemma.

关于Wielandt的zipper引理和有限群的\(\sigma\) -次正规子群
设\(\mathbb{P}\)表示所有质数的集合,I是一个集合,\(\sigma = \lbrace \sigma_i \mid i \in I \rbrace\)是\(\mathbb{P}\)的一个分区。如果存在一条G的子群链\(H = H_0 \le H_1 \le \dots \le H_n = G\),使得对于每个\(1 \le j \le n\)子群\(H_{j-1}\)在Hj上是正规的,或者对于某些\(i \in I\)子群\(H_j/(H_{j-1})_{H_j}\)是\(\sigma_i\) -群,则称G的子群H在G上是\(\sigma\) -次正规的。如果\(\sigma\)是将\(\mathbb{P}\)划分为大小为1的子集,那么\(\sigma\) -次正态的概念就简化为我们熟悉的次正态概念。近年来,许多关于次正规子群的结果被推广到\(\sigma\) -次正规子群的结果。这条研究路线在本注中通过证明Wielandt的拉链引理的\(\sigma\) -版本继续进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信