Limit Fluctuations of Stationary Measure of Totally Asymmetric Simple Exclusion Process with Open Boundaries on the Coexistence Line

IF 2.6 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Włodzimierz Bryc, Joseph Najnudel, Yizao Wang
{"title":"Limit Fluctuations of Stationary Measure of Totally Asymmetric Simple Exclusion Process with Open Boundaries on the Coexistence Line","authors":"Włodzimierz Bryc,&nbsp;Joseph Najnudel,&nbsp;Yizao Wang","doi":"10.1007/s00220-025-05374-7","DOIUrl":null,"url":null,"abstract":"<div><p>We describe limit fluctuations of the height function for the open TASEP on the coexistence line under the stationary measure. It is known that the height function satisfies a law of large numbers as the number of sites <i>n</i> goes to infinity which at the coexistence line is exotic in the sense that the first-order limit is random. Here, we study the functional central limit theorem: we show that with a random centering and normalized by <span>\\(\\sqrt{n}\\)</span>, the second-order limit of the height functions is a (random) mixture of two independent Brownian motions.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 8","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-025-05374-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05374-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We describe limit fluctuations of the height function for the open TASEP on the coexistence line under the stationary measure. It is known that the height function satisfies a law of large numbers as the number of sites n goes to infinity which at the coexistence line is exotic in the sense that the first-order limit is random. Here, we study the functional central limit theorem: we show that with a random centering and normalized by \(\sqrt{n}\), the second-order limit of the height functions is a (random) mixture of two independent Brownian motions.

共存线上开边界的完全不对称简单不相容过程平稳测度的极限涨落
我们描述了在平稳测度下开放TASEP在共存线上的高度函数的极限涨落。众所周知,高度函数满足大数定律,当n趋于无穷时,共存线上的一阶极限是随机的,这是奇异的。在这里,我们研究了泛函中心极限定理:我们证明了在随机定心和\(\sqrt{n}\)归一化的情况下,高度函数的二阶极限是两个独立布朗运动的(随机)混合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信