Yu. V. Spitsyna, A. S. Lipatyev, S. I. Stopkin, Yu. V. Mikhailov, S. S. Fedotov, D. L. Alferov, E. V. Lopatina, V. N. Sigaev
{"title":"Laser Thermal Compaction of Nanoporous Glasses","authors":"Yu. V. Spitsyna, A. S. Lipatyev, S. I. Stopkin, Yu. V. Mikhailov, S. S. Fedotov, D. L. Alferov, E. V. Lopatina, V. N. Sigaev","doi":"10.1007/s10717-025-00754-w","DOIUrl":null,"url":null,"abstract":"<p>The processes of thermal compaction of nanoporous glass surfaces using carbon dioxide laser radiation have been investigated. Successful formation of a thermally compacted layer with a thickness of (20 ± 1) μm was demonstrated under the following thermal compaction regime: average radiation power 10.5 W, defocusing ∆<i>f</i> = 16 mm of an F-theta lens with a focal length of 157 mm, scan speed 40 mm/sec, and track spacing 100 μm. It was shown that birefringent structures can be recorded through the thermally compacted layer using femtosecond pulses, with the magnitude of their phase shift serving as an indirect indicator of glass porosity.</p>","PeriodicalId":579,"journal":{"name":"Glass and Ceramics","volume":"82 3-4","pages":"93 - 97"},"PeriodicalIF":0.6000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glass and Ceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10717-025-00754-w","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The processes of thermal compaction of nanoporous glass surfaces using carbon dioxide laser radiation have been investigated. Successful formation of a thermally compacted layer with a thickness of (20 ± 1) μm was demonstrated under the following thermal compaction regime: average radiation power 10.5 W, defocusing ∆f = 16 mm of an F-theta lens with a focal length of 157 mm, scan speed 40 mm/sec, and track spacing 100 μm. It was shown that birefringent structures can be recorded through the thermally compacted layer using femtosecond pulses, with the magnitude of their phase shift serving as an indirect indicator of glass porosity.
期刊介绍:
Glass and Ceramics reports on advances in basic and applied research and plant production techniques in glass and ceramics. The journal''s broad coverage includes developments in the areas of silicate chemistry, mineralogy and metallurgy, crystal chemistry, solid state reactions, raw materials, phase equilibria, reaction kinetics, physicochemical analysis, physics of dielectrics, and refractories, among others.