Tube Category, Tensor Renormalization and Topological Holography

IF 2.6 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Tian Lan
{"title":"Tube Category, Tensor Renormalization and Topological Holography","authors":"Tian Lan","doi":"10.1007/s00220-025-05383-6","DOIUrl":null,"url":null,"abstract":"<div><p>Ocneanu’s tube algebra provides a finite algorithm to compute the Drinfeld center of a fusion category. In this work we reveal the universal property underlying the tube algebra. Take a base category <span>\\({\\mathcal {V}}\\)</span> which is strongly concrete, bicomplete, and closed symmetric monoidal. For physical applications one takes <span>\\({\\mathcal {V}}=\\textbf{Vect}\\)</span> the category of vector spaces. Given a <span>\\({\\mathcal {V}}\\)</span>-enriched rigid monoidal category <span>\\({\\mathcal {C}}\\)</span> (not necessarily finite or semisimple) we define the tube category <span>\\({\\mathbb {X}} {\\mathcal {C}}\\)</span> using coends valued in <span>\\({\\mathcal {V}}\\)</span>. Our main theorem established the relation between (the category of representations of) the tube category <span>\\({\\mathbb {X}} {\\mathcal {C}}\\)</span> and the Drinfeld center <span>\\(Z({\\mathcal {C}})\\)</span>: <span>\\(Z({\\mathcal {C}})\\hookrightarrow \\textrm{Fun}({\\mathbb {X}} {\\mathcal {C}}^{\\textrm{op}},{\\mathcal {V}})\\cong Z({\\mathcal {C}}\\hookrightarrow \\textrm{Fun}({\\mathcal {C}}^{\\textrm{op}},{\\mathcal {V}}))\\hookrightarrow Z(\\textrm{Fun}({\\mathcal {C}}^{\\textrm{op}},{\\mathcal {V}}))\\)</span>. Physically, besides viewing the tube category as a version of TFT with domain being the tube, we emphasize the “Wick-rotated” perspective, that the morphisms in <span>\\({\\mathbb {X}} {\\mathcal {C}}\\)</span> are the local tensors of fixed-point matrix product operators which preserves the symmetry <span>\\({\\mathcal {C}}\\)</span> in one spatial dimension. We provide a first-principle flavored construction, from microscopic quantum degrees of freedom and operators preserving the symmetry, to the macroscopic universal properties of the symmetry which form the Drinfeld center. Our work is thus a proof to the 1+1D topological holography in a very general setting.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 8","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-025-05383-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05383-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ocneanu’s tube algebra provides a finite algorithm to compute the Drinfeld center of a fusion category. In this work we reveal the universal property underlying the tube algebra. Take a base category \({\mathcal {V}}\) which is strongly concrete, bicomplete, and closed symmetric monoidal. For physical applications one takes \({\mathcal {V}}=\textbf{Vect}\) the category of vector spaces. Given a \({\mathcal {V}}\)-enriched rigid monoidal category \({\mathcal {C}}\) (not necessarily finite or semisimple) we define the tube category \({\mathbb {X}} {\mathcal {C}}\) using coends valued in \({\mathcal {V}}\). Our main theorem established the relation between (the category of representations of) the tube category \({\mathbb {X}} {\mathcal {C}}\) and the Drinfeld center \(Z({\mathcal {C}})\): \(Z({\mathcal {C}})\hookrightarrow \textrm{Fun}({\mathbb {X}} {\mathcal {C}}^{\textrm{op}},{\mathcal {V}})\cong Z({\mathcal {C}}\hookrightarrow \textrm{Fun}({\mathcal {C}}^{\textrm{op}},{\mathcal {V}}))\hookrightarrow Z(\textrm{Fun}({\mathcal {C}}^{\textrm{op}},{\mathcal {V}}))\). Physically, besides viewing the tube category as a version of TFT with domain being the tube, we emphasize the “Wick-rotated” perspective, that the morphisms in \({\mathbb {X}} {\mathcal {C}}\) are the local tensors of fixed-point matrix product operators which preserves the symmetry \({\mathcal {C}}\) in one spatial dimension. We provide a first-principle flavored construction, from microscopic quantum degrees of freedom and operators preserving the symmetry, to the macroscopic universal properties of the symmetry which form the Drinfeld center. Our work is thus a proof to the 1+1D topological holography in a very general setting.

管范畴、张量重整化与拓扑全息
Ocneanu管代数提供了一种计算融合范畴德林菲尔德中心的有限算法。在这项工作中,我们揭示了管代数的普遍性质。取一个基范畴\({\mathcal {V}}\),它是强具体的、双完全的、闭对称的单轴。对于物理应用,我们取\({\mathcal {V}}=\textbf{Vect}\)向量空间的范畴。给定一个富含\({\mathcal {V}}\)的刚性一元范畴\({\mathcal {C}}\)(不一定是有限的或半简单的),我们用\({\mathcal {V}}\)的值定义管范畴\({\mathbb {X}} {\mathcal {C}}\)。我们的主要定理建立了管范畴\({\mathbb {X}} {\mathcal {C}}\)和德林菲尔德中心\(Z({\mathcal {C}})\): \(Z({\mathcal {C}})\hookrightarrow \textrm{Fun}({\mathbb {X}} {\mathcal {C}}^{\textrm{op}},{\mathcal {V}})\cong Z({\mathcal {C}}\hookrightarrow \textrm{Fun}({\mathcal {C}}^{\textrm{op}},{\mathcal {V}}))\hookrightarrow Z(\textrm{Fun}({\mathcal {C}}^{\textrm{op}},{\mathcal {V}}))\)之间的关系。在物理上,除了将管类看作是一种以管为域的TFT之外,我们还强调了“wick - rotation”的观点,即\({\mathbb {X}} {\mathcal {C}}\)中的态射是保持一维空间对称性\({\mathcal {C}}\)的不动点矩阵积算子的局部张量。我们提供了一个第一性原理风味的结构,从微观的量子自由度和保持对称性的算子,到形成德林菲尔德中心的对称性的宏观普遍性质。因此,我们的工作证明了1+1D拓扑全息在一个非常一般的设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信