{"title":"Efficient bimodal emotion recognition system based on speech/text embeddings and ensemble learning fusion","authors":"Adil Chakhtouna, Sara Sekkate, Abdellah Adib","doi":"10.1007/s12243-025-01088-y","DOIUrl":null,"url":null,"abstract":"<div><p>Emotion recognition (ER) is a pivotal discipline in the field of contemporary human–machine interaction. Its primary objective is to explore and advance theories, systems, and methodologies that can effectively recognize, comprehend, and interpret human emotions. This research investigates both unimodal and bimodal strategies for ER using advanced feature embeddings for audio and text data. We leverage pretrained models such as ImageBind for speech and RoBERTa, alongside traditional TF-IDF embeddings for text, to achieve accurate recognition of emotional states. A variety of machine learning (ML) and deep learning (DL) algorithms were implemented to evaluate their performance in speaker dependent (SD) and speaker independent (SI) scenarios. Additionally, three feature fusion methods, early fusion, majority voting fusion, and stacking ensemble fusion, were employed for the bimodal emotion recognition (BER) task. Extensive numerical simulations were conducted to systematically address the complexities and challenges associated with both unimodal and bimodal ER. Our most remarkable findings demonstrate an accuracy of <span>\\(86.75\\%\\)</span> in the SD scenario and <span>\\(64.04\\%\\)</span> in the SI scenario on the IEMOCAP database for the proposed BER system.</p></div>","PeriodicalId":50761,"journal":{"name":"Annals of Telecommunications","volume":"80 and networking","pages":"379 - 399"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Telecommunications","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s12243-025-01088-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Emotion recognition (ER) is a pivotal discipline in the field of contemporary human–machine interaction. Its primary objective is to explore and advance theories, systems, and methodologies that can effectively recognize, comprehend, and interpret human emotions. This research investigates both unimodal and bimodal strategies for ER using advanced feature embeddings for audio and text data. We leverage pretrained models such as ImageBind for speech and RoBERTa, alongside traditional TF-IDF embeddings for text, to achieve accurate recognition of emotional states. A variety of machine learning (ML) and deep learning (DL) algorithms were implemented to evaluate their performance in speaker dependent (SD) and speaker independent (SI) scenarios. Additionally, three feature fusion methods, early fusion, majority voting fusion, and stacking ensemble fusion, were employed for the bimodal emotion recognition (BER) task. Extensive numerical simulations were conducted to systematically address the complexities and challenges associated with both unimodal and bimodal ER. Our most remarkable findings demonstrate an accuracy of \(86.75\%\) in the SD scenario and \(64.04\%\) in the SI scenario on the IEMOCAP database for the proposed BER system.
期刊介绍:
Annals of Telecommunications is an international journal publishing original peer-reviewed papers in the field of telecommunications. It covers all the essential branches of modern telecommunications, ranging from digital communications to communication networks and the internet, to software, protocols and services, uses and economics. This large spectrum of topics accounts for the rapid convergence through telecommunications of the underlying technologies in computers, communications, content management towards the emergence of the information and knowledge society. As a consequence, the Journal provides a medium for exchanging research results and technological achievements accomplished by the European and international scientific community from academia and industry.