O. A. Medennikov, M. A. Egorova, N. P. Shabelskaya, Z. D. Khliyan
{"title":"Heat Treatment Modes of Phosphogypsum for Obtaining Ultraviolet Pigments","authors":"O. A. Medennikov, M. A. Egorova, N. P. Shabelskaya, Z. D. Khliyan","doi":"10.1007/s10717-025-00766-6","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the possibility of heat treatment of phosphogypsum, a waste product of the chemical industry. Partial dehydration of dihydrous calcium sulfate occurs when phosphogypsum is dried, and complete dehydration occurs when it is calcined at temperatures of 600 – 1200°C. The samples were found to actively absorb water after heat treatment below 800°C. During the heat treatment of phosphogypsum in the presence of a reducing agent, two endothermic effects related to the sequential dehydration of CaSO<sub>4</sub>· 2H<sub>2</sub>O were observed, as well as a broad peak of exothermic effect due to the heat degradation of the reducing agent and the formation of calcium sulfide from phosphogypsum. Heat-treated phosphogypsum samples in the presence of the reducing agent acquire the ability to emit yellow-orange luminescence under the action of ultraviolet radiation. Synthesized pigments can be used to produce water-based paints and varnishes.</p>","PeriodicalId":579,"journal":{"name":"Glass and Ceramics","volume":"82 3-4","pages":"165 - 170"},"PeriodicalIF":0.6000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glass and Ceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10717-025-00766-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the possibility of heat treatment of phosphogypsum, a waste product of the chemical industry. Partial dehydration of dihydrous calcium sulfate occurs when phosphogypsum is dried, and complete dehydration occurs when it is calcined at temperatures of 600 – 1200°C. The samples were found to actively absorb water after heat treatment below 800°C. During the heat treatment of phosphogypsum in the presence of a reducing agent, two endothermic effects related to the sequential dehydration of CaSO4· 2H2O were observed, as well as a broad peak of exothermic effect due to the heat degradation of the reducing agent and the formation of calcium sulfide from phosphogypsum. Heat-treated phosphogypsum samples in the presence of the reducing agent acquire the ability to emit yellow-orange luminescence under the action of ultraviolet radiation. Synthesized pigments can be used to produce water-based paints and varnishes.
期刊介绍:
Glass and Ceramics reports on advances in basic and applied research and plant production techniques in glass and ceramics. The journal''s broad coverage includes developments in the areas of silicate chemistry, mineralogy and metallurgy, crystal chemistry, solid state reactions, raw materials, phase equilibria, reaction kinetics, physicochemical analysis, physics of dielectrics, and refractories, among others.