Modulation of d–d orbital interactions in Ti–Ni–N4 coordination introduces dynamic bonding for enhanced CO2 photoreduction

IF 11 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Song-Song Zhi, Xiao-Xiao Zou, Jin-Ye Lei, Lu Zhang, Zi-Han Li, Wan-Nuo Gu, Fahim Ullah, Hong Guo, Da-Peng Wu
{"title":"Modulation of d–d orbital interactions in Ti–Ni–N4 coordination introduces dynamic bonding for enhanced CO2 photoreduction","authors":"Song-Song Zhi,&nbsp;Xiao-Xiao Zou,&nbsp;Jin-Ye Lei,&nbsp;Lu Zhang,&nbsp;Zi-Han Li,&nbsp;Wan-Nuo Gu,&nbsp;Fahim Ullah,&nbsp;Hong Guo,&nbsp;Da-Peng Wu","doi":"10.1007/s12598-025-03487-5","DOIUrl":null,"url":null,"abstract":"<div><p>Photocatalytic CO<sub>2</sub> reduction using atomically dispersed catalysts holds significant potential for addressing global energy and environmental challenges. However, the influence of d–d orbital interactions between metal centers and coordinated atoms remains underexplored. Herein, nickel phthalocyanine is anchored to the metal-exposed crystal face of TiO<sub>2</sub>, forming Ti–Ni–N<sub>4</sub> coordination. This configuration reveals that the axially coordinated Ti atoms serve as a novel electron channel with electron-donating ability, transferring electrons to the Ni center through d–d coupling. It is found that the dynamic adjustment of bond lengths and d-band centers in Ti–Ni bonding during CO<sub>2</sub> photoreduction process can effectively modulate the adsorption strengths of the Ni center for different intermediates. This leads to a significant enhancement in the photocatalytic performance for CO<sub>2</sub> reduction to CO without a sacrificial reagent, achieving an exceptional CO evolution rate of 378.5 μmol g<sup>−1</sup>. Furthermore, the d–d coupling mediated by Ti–Ni–N<sub>4</sub> coordination increases the vacancy formation energy of active sites, preventing the leaching of Ni active centers. This study provides a strategy for the precise design of d–d orbital regulation and resistance to demetallization in photocatalysts for efficient CO<sub>2</sub> conversion.</p><h3>Graphic abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 10","pages":"7464 - 7475"},"PeriodicalIF":11.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-025-03487-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Photocatalytic CO2 reduction using atomically dispersed catalysts holds significant potential for addressing global energy and environmental challenges. However, the influence of d–d orbital interactions between metal centers and coordinated atoms remains underexplored. Herein, nickel phthalocyanine is anchored to the metal-exposed crystal face of TiO2, forming Ti–Ni–N4 coordination. This configuration reveals that the axially coordinated Ti atoms serve as a novel electron channel with electron-donating ability, transferring electrons to the Ni center through d–d coupling. It is found that the dynamic adjustment of bond lengths and d-band centers in Ti–Ni bonding during CO2 photoreduction process can effectively modulate the adsorption strengths of the Ni center for different intermediates. This leads to a significant enhancement in the photocatalytic performance for CO2 reduction to CO without a sacrificial reagent, achieving an exceptional CO evolution rate of 378.5 μmol g−1. Furthermore, the d–d coupling mediated by Ti–Ni–N4 coordination increases the vacancy formation energy of active sites, preventing the leaching of Ni active centers. This study provides a strategy for the precise design of d–d orbital regulation and resistance to demetallization in photocatalysts for efficient CO2 conversion.

Graphic abstract

Ti-Ni-N4配位中d-d轨道相互作用的调制引入了增强CO2光还原的动态键
利用原子分散催化剂进行光催化CO2还原,在解决全球能源和环境挑战方面具有巨大的潜力。然而,金属中心和配位原子之间的d-d轨道相互作用的影响仍未得到充分的研究。其中,酞菁镍被锚定在TiO2的金属暴露晶面上,形成Ti-Ni-N4配位。这种构型揭示了轴向配位的Ti原子作为一种具有给电子能力的新型电子通道,通过d-d耦合将电子转移到Ni中心。研究发现,在CO2光还原过程中,动态调整Ti-Ni键的键长和d带中心可以有效调节Ni中心对不同中间体的吸附强度。这使得在不牺牲试剂的情况下,CO2还原为CO的光催化性能显著提高,CO的析出速率达到了378.5 μmol g−1。此外,Ti-Ni-N4配位介导的d-d偶联增加了活性位点的空位形成能,阻止了Ni活性中心的浸出。该研究为精确设计d-d轨道调控和抗脱金属光催化剂以实现高效的CO2转化提供了一种策略。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信