Exponential Speedups for Quantum Walks in Random Hierarchical Graphs

IF 2.6 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Shankar Balasubramanian, Tongyang Li, Aram W. Harrow
{"title":"Exponential Speedups for Quantum Walks in Random Hierarchical Graphs","authors":"Shankar Balasubramanian,&nbsp;Tongyang Li,&nbsp;Aram W. Harrow","doi":"10.1007/s00220-025-05370-x","DOIUrl":null,"url":null,"abstract":"<div><p>There are few known exponential speedups for quantum algorithms and these tend to fall into even fewer families. One speedup that has mostly resisted generalization is the use of quantum walks to traverse the welded-tree graph, due to Childs, Cleve, Deotto, Farhi, Gutmann, and Spielman. We show how to generalize this to a large class of hierarchical graphs in which the vertices are grouped into “supervertices” which are arranged according to a <i>d</i>-dimensional lattice. Supervertices can have different sizes, and edges between supervertices correspond to random connections between their constituent vertices. The hitting times of quantum walks on these graphs are related to the localization properties of zero modes in certain disordered tight binding Hamiltonians. The speedups range from superpolynomial to exponential, depending on the underlying dimension and the random graph model. We also provide concrete realizations of these hierarchical graphs, and introduce a general method for constructing graphs with efficient quantum traversal times using graph sparsification.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 9","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-025-05370-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05370-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

There are few known exponential speedups for quantum algorithms and these tend to fall into even fewer families. One speedup that has mostly resisted generalization is the use of quantum walks to traverse the welded-tree graph, due to Childs, Cleve, Deotto, Farhi, Gutmann, and Spielman. We show how to generalize this to a large class of hierarchical graphs in which the vertices are grouped into “supervertices” which are arranged according to a d-dimensional lattice. Supervertices can have different sizes, and edges between supervertices correspond to random connections between their constituent vertices. The hitting times of quantum walks on these graphs are related to the localization properties of zero modes in certain disordered tight binding Hamiltonians. The speedups range from superpolynomial to exponential, depending on the underlying dimension and the random graph model. We also provide concrete realizations of these hierarchical graphs, and introduce a general method for constructing graphs with efficient quantum traversal times using graph sparsification.

随机层次图中量子行走的指数加速
很少有已知的量子算法的指数加速,它们往往属于更少的家族。由于Childs、Cleve、Deotto、Farhi、Gutmann和Spielman的研究,一种最不利于泛化的加速是使用量子行走来遍历焊接树图。我们展示了如何将其推广到一大类分层图中,其中的顶点被分组为“超顶点”,这些顶点按照d维晶格排列。超顶点可以有不同的大小,超顶点之间的边对应于其组成顶点之间的随机连接。量子行走在这些图上的命中次数与某些无序紧结合哈密顿量中零模的局域性有关。加速范围从超多项式到指数,取决于底层维度和随机图模型。我们还提供了这些层次图的具体实现,并介绍了使用图稀疏化构造具有高效量子遍历时间的图的一般方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信