Exact Schwinger Functions for a Class of Bounded Interactions in \(d\ge 2\)

IF 2.6 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Wojciech Dybalski
{"title":"Exact Schwinger Functions for a Class of Bounded Interactions in \\(d\\ge 2\\)","authors":"Wojciech Dybalski","doi":"10.1007/s00220-025-05391-6","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a scalar Euclidean QFT with interaction given by a bounded, measurable function <span>\\(V\\)</span> such that <span>\\(V^{\\pm }:=\\lim _{w\\rightarrow \\pm \\infty }V(w)\\)</span> exist. We find a field renormalization such that all the <i>n</i>-point connected Schwinger functions for <span>\\(n\\ne 2\\)</span> exist non-perturbatively in the UV limit. They coincide with the tree-level one-particle irreducible Schwinger functions of the <span>\\(\\textrm{erf}(\\phi /\\sqrt{2})\\)</span> interaction with a coupling constant <span>\\(\\frac{1}{2} (V^+ - V^-)\\)</span>. By a slight modification of our construction we can change this coupling constant to <span>\\(\\frac{1}{2} (V_+ - V_-)\\)</span>, where <span>\\(V_{\\pm }:= \\lim _{w\\rightarrow 0^{\\pm }} V(w)\\)</span>. Thereby, non-Gaussianity of these latter theories is governed by a discontinuity of <span>\\(V\\)</span> at zero. The open problem of controlling also the two-point function of these QFTs is discussed.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 9","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-025-05391-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05391-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a scalar Euclidean QFT with interaction given by a bounded, measurable function \(V\) such that \(V^{\pm }:=\lim _{w\rightarrow \pm \infty }V(w)\) exist. We find a field renormalization such that all the n-point connected Schwinger functions for \(n\ne 2\) exist non-perturbatively in the UV limit. They coincide with the tree-level one-particle irreducible Schwinger functions of the \(\textrm{erf}(\phi /\sqrt{2})\) interaction with a coupling constant \(\frac{1}{2} (V^+ - V^-)\). By a slight modification of our construction we can change this coupling constant to \(\frac{1}{2} (V_+ - V_-)\), where \(V_{\pm }:= \lim _{w\rightarrow 0^{\pm }} V(w)\). Thereby, non-Gaussianity of these latter theories is governed by a discontinuity of \(V\) at zero. The open problem of controlling also the two-point function of these QFTs is discussed.

一类有界相互作用的精确Schwinger函数 \(d\ge 2\)
我们考虑一个标量欧几里德QFT,其相互作用由一个有界的,可测量的函数\(V\)给出,使得\(V^{\pm }:=\lim _{w\rightarrow \pm \infty }V(w)\)存在。我们发现了一个场重整化,使得\(n\ne 2\)的所有n点连接Schwinger函数在UV极限内非摄动存在。它们与具有耦合常数\(\frac{1}{2} (V^+ - V^-)\)的\(\textrm{erf}(\phi /\sqrt{2})\)相互作用的树级单粒子不可约Schwinger函数相吻合。通过稍微修改我们的构造,我们可以将这个耦合常数更改为\(\frac{1}{2} (V_+ - V_-)\),其中\(V_{\pm }:= \lim _{w\rightarrow 0^{\pm }} V(w)\)。因此,后一种理论的非高斯性是由\(V\)在零处的不连续所控制的。讨论了控制这些qft的两点函数的开放问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信