Optimal Transport on Null Hypersurfaces and the Null Energy Condition

IF 2.6 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Fabio Cavalletti, Davide Manini, Andrea Mondino
{"title":"Optimal Transport on Null Hypersurfaces and the Null Energy Condition","authors":"Fabio Cavalletti,&nbsp;Davide Manini,&nbsp;Andrea Mondino","doi":"10.1007/s00220-025-05345-y","DOIUrl":null,"url":null,"abstract":"<div><p>The goal of the present work is to study optimal transport on null hypersurfaces inside Lorentzian manifolds. The challenge here is that optimal transport along a null hypersurface is completely degenerate, as the cost takes only the two values 0 and <span>\\(+\\infty \\)</span>. The tools developed in the manuscript enable to give an optimal transport characterization of the null energy condition (namely, non-negative Ricci curvature in the null directions) for Lorentzian manifolds in terms of convexity properties of the Boltzmann–Shannon entropy along null-geodesics of probability measures. We obtain as applications: a stability result under convergence of spacetimes, a comparison result for null-cones, and the Hawking area theorem (both in sharp form, for possibly weighted measures, and with apparently new rigidity statements).</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 9","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-025-05345-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05345-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of the present work is to study optimal transport on null hypersurfaces inside Lorentzian manifolds. The challenge here is that optimal transport along a null hypersurface is completely degenerate, as the cost takes only the two values 0 and \(+\infty \). The tools developed in the manuscript enable to give an optimal transport characterization of the null energy condition (namely, non-negative Ricci curvature in the null directions) for Lorentzian manifolds in terms of convexity properties of the Boltzmann–Shannon entropy along null-geodesics of probability measures. We obtain as applications: a stability result under convergence of spacetimes, a comparison result for null-cones, and the Hawking area theorem (both in sharp form, for possibly weighted measures, and with apparently new rigidity statements).

零超曲面上的最优输运和零能量条件
本文的目的是研究洛伦兹流形内零超曲面上的最优输运。这里的挑战是沿零超曲面的最优传输是完全退化的,因为代价只取两个值0和\(+\infty \)。手稿中开发的工具能够根据玻尔兹曼-香农熵沿概率测度的零测地线的凹凸性,给出洛伦兹流形的零能量条件(即零方向上的非负里奇曲率)的最佳输运特征。作为应用,我们得到:时空收敛下的稳定性结果,零锥的比较结果,以及霍金面积定理(两者都是尖锐的形式,对于可能的加权测度,以及明显新的刚性陈述)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信