Coordination-etching fabrication of ZIF-67-derived nickel–cobalt layered double hydroxides for aqueous Ni-Zn batteries

IF 11 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ling-Ling Chen, Dian-Heng Yu, Yi-Hao Chen, Hsiao-Chien Chen, Mohsen Shakouri, Yi-Chun Su, Huan Pang
{"title":"Coordination-etching fabrication of ZIF-67-derived nickel–cobalt layered double hydroxides for aqueous Ni-Zn batteries","authors":"Ling-Ling Chen,&nbsp;Dian-Heng Yu,&nbsp;Yi-Hao Chen,&nbsp;Hsiao-Chien Chen,&nbsp;Mohsen Shakouri,&nbsp;Yi-Chun Su,&nbsp;Huan Pang","doi":"10.1007/s12598-025-03545-y","DOIUrl":null,"url":null,"abstract":"<div><p>Aqueous zinc-based batteries (ZBBs) are promising for grid-scale energy storage owing to their safety and cost-effectiveness; however, their practical application is hindered by rapid capacity fading and unstable cathodes caused by sluggish Zn<sup>2+</sup> kinetics and structural degradation in alkaline electrolytes. Herein, to address these challenges, we utilize amphiphilic polymer (PVP) to realize the composite of nickel-based complexes and ZIF-67. The hierarchical nickel–cobalt layered double hydroxide (NiCo-LDH) was prepared by metal ion exchange strategy. PVP-mediated-mediated suppression of agglomeration, combined with Ni<sup>2+</sup>-induced framework reconstruction, synergistically modulated the morphology, resulting in mesoporous nanosheets with hydroxyl-rich surfaces. This design generated high-valence Co<sup>3+</sup> species through charge-compensation-driven oxidation, thereby significantly accelerating Zn<sup>2+</sup> ion diffusion and reducing the interfacial resistance. The optimized NiCo-LDH-100 cathode (Ni:Co = 3:1) achieves cycling stability and exceptional energy/power densities (0.49 mWh cm<sup>–2</sup>/49.1 mW cm<sup>–2</sup>). This study provides a solution for the cathode instability of Ni-Zn batteries through a coordination-derivatization strategy, which is promising for advancing sustainable energy storage technologies.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 10","pages":"7185 - 7194"},"PeriodicalIF":11.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-025-03545-y","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous zinc-based batteries (ZBBs) are promising for grid-scale energy storage owing to their safety and cost-effectiveness; however, their practical application is hindered by rapid capacity fading and unstable cathodes caused by sluggish Zn2+ kinetics and structural degradation in alkaline electrolytes. Herein, to address these challenges, we utilize amphiphilic polymer (PVP) to realize the composite of nickel-based complexes and ZIF-67. The hierarchical nickel–cobalt layered double hydroxide (NiCo-LDH) was prepared by metal ion exchange strategy. PVP-mediated-mediated suppression of agglomeration, combined with Ni2+-induced framework reconstruction, synergistically modulated the morphology, resulting in mesoporous nanosheets with hydroxyl-rich surfaces. This design generated high-valence Co3+ species through charge-compensation-driven oxidation, thereby significantly accelerating Zn2+ ion diffusion and reducing the interfacial resistance. The optimized NiCo-LDH-100 cathode (Ni:Co = 3:1) achieves cycling stability and exceptional energy/power densities (0.49 mWh cm–2/49.1 mW cm–2). This study provides a solution for the cathode instability of Ni-Zn batteries through a coordination-derivatization strategy, which is promising for advancing sustainable energy storage technologies.

Graphical Abstract

zif -67衍生镍钴层状双氢氧化物的配位蚀刻制备
由于其安全性和成本效益,锌基水溶液电池(ZBBs)在电网规模储能方面具有很大的前景;然而,在碱性电解质中,由于Zn2+动力学迟钝和结构降解导致的容量快速衰减和阴极不稳定,阻碍了它们的实际应用。为了解决这些问题,我们利用两亲性聚合物(PVP)实现了镍基配合物与ZIF-67的复合。采用金属离子交换法制备了镍钴分层双氢氧化物(NiCo-LDH)。pvp介导的团聚抑制,结合Ni2+诱导的框架重建,协同调节了形貌,产生了表面富含羟基的介孔纳米片。该设计通过电荷补偿驱动氧化产生高价Co3+,从而显著加速Zn2+离子扩散,降低界面阻力。优化后的NiCo-LDH-100阴极(Ni:Co = 3:1)实现了循环稳定性和卓越的能量/功率密度(0.49 mWh cm-2 /49.1 mW cm-2)。该研究通过协调衍生化策略为镍锌电池阴极不稳定性提供了解决方案,有望推动可持续储能技术的发展。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信