An extension of the spectral fractional Laplacian to non-homogeneous boundary condition on rectangular domains, with application to well-posedness for plate equation with structural damping
{"title":"An extension of the spectral fractional Laplacian to non-homogeneous boundary condition on rectangular domains, with application to well-posedness for plate equation with structural damping","authors":"Julian Edward","doi":"10.1016/j.jmaa.2025.130073","DOIUrl":null,"url":null,"abstract":"<div><div>Let Δ be the Dirichlet Laplacian on a rectangular domain <span><math><mi>R</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>. We study the mapping properties of an extension of the spectral fractional Laplacian, <span><math><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>α</mi></mrow></msup></math></span>, for <span><math><mi>α</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, when applied to functions satisfying non-homogeneous boundary conditions. A symmetry formula is proven. As an application, we prove well-posedness results for the structurally damped plate equation<span><span><span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi><mi>t</mi></mrow></msub><mo>+</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><mi>ρ</mi><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>α</mi></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>∈</mo><mi>R</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></math></span></span></span> with non-homogeneous boundary conditions<span><span><span><math><mi>u</mi><msub><mrow><mo>|</mo></mrow><mrow><mo>∂</mo><mi>R</mi></mrow></msub><mo>=</mo><mi>f</mi><mo>,</mo><mspace></mspace><mi>Δ</mi><mi>u</mi><msub><mrow><mo>|</mo></mrow><mrow><mo>∂</mo><mi>R</mi></mrow></msub><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mo>∂</mo><mi>R</mi><mo>×</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>)</mo><mo>.</mo></math></span></span></span> Other non-homogeneous boundary conditions are also considered.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"556 1","pages":"Article 130073"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25008546","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let Δ be the Dirichlet Laplacian on a rectangular domain . We study the mapping properties of an extension of the spectral fractional Laplacian, , for , when applied to functions satisfying non-homogeneous boundary conditions. A symmetry formula is proven. As an application, we prove well-posedness results for the structurally damped plate equation with non-homogeneous boundary conditions Other non-homogeneous boundary conditions are also considered.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.