An extension of the spectral fractional Laplacian to non-homogeneous boundary condition on rectangular domains, with application to well-posedness for plate equation with structural damping

IF 1.2 3区 数学 Q1 MATHEMATICS
Julian Edward
{"title":"An extension of the spectral fractional Laplacian to non-homogeneous boundary condition on rectangular domains, with application to well-posedness for plate equation with structural damping","authors":"Julian Edward","doi":"10.1016/j.jmaa.2025.130073","DOIUrl":null,"url":null,"abstract":"<div><div>Let Δ be the Dirichlet Laplacian on a rectangular domain <span><math><mi>R</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>. We study the mapping properties of an extension of the spectral fractional Laplacian, <span><math><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>α</mi></mrow></msup></math></span>, for <span><math><mi>α</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, when applied to functions satisfying non-homogeneous boundary conditions. A symmetry formula is proven. As an application, we prove well-posedness results for the structurally damped plate equation<span><span><span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi><mi>t</mi></mrow></msub><mo>+</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><mi>ρ</mi><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>α</mi></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>∈</mo><mi>R</mi><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></math></span></span></span> with non-homogeneous boundary conditions<span><span><span><math><mi>u</mi><msub><mrow><mo>|</mo></mrow><mrow><mo>∂</mo><mi>R</mi></mrow></msub><mo>=</mo><mi>f</mi><mo>,</mo><mspace></mspace><mi>Δ</mi><mi>u</mi><msub><mrow><mo>|</mo></mrow><mrow><mo>∂</mo><mi>R</mi></mrow></msub><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mo>∂</mo><mi>R</mi><mo>×</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>)</mo><mo>.</mo></math></span></span></span> Other non-homogeneous boundary conditions are also considered.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"556 1","pages":"Article 130073"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25008546","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let Δ be the Dirichlet Laplacian on a rectangular domain RRN. We study the mapping properties of an extension of the spectral fractional Laplacian, (Δ)α, for α[0,1), when applied to functions satisfying non-homogeneous boundary conditions. A symmetry formula is proven. As an application, we prove well-posedness results for the structurally damped plate equationutt+Δ2u+ρ(Δ)αut=0,xR,t>0, with non-homogeneous boundary conditionsu|R=f,Δu|R=0,fL2(R×[0,)). Other non-homogeneous boundary conditions are also considered.
将谱分数阶拉普拉斯算子推广到矩形域上的非齐次边界条件,并应用于具有结构阻尼的板方程的适定性
设Δ为矩形域R∧RN上的狄利克雷拉普拉斯算子。研究了α∈[0,1]时谱分数阶拉普拉斯算子(−Δ)α的扩展在满足非齐次边界条件的函数上的映射性质。证明了一个对称公式。作为应用,我们证明了结构阻尼板方程t+Δ2u+ρ(−Δ)αut=0,x∈R,t>0,具有非齐次边界条件|∂R=f,Δu|∂R=0,f∈L2(∂rx[0,∞))的适定性结果。还考虑了其他非齐次边界条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信