C⁎-supports and abnormalities of operator systems

IF 1.2 3区 数学 Q1 MATHEMATICS
Raphaël Clouâtre , Colin Krisko
{"title":"C⁎-supports and abnormalities of operator systems","authors":"Raphaël Clouâtre ,&nbsp;Colin Krisko","doi":"10.1016/j.jmaa.2025.130074","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>S</em> be a concrete operator system represented on some Hilbert space <em>H</em>. A <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-support of <em>S</em> is the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebra generated (via the Choi–Effros product) by <em>S</em> inside an injective operator system acting on <em>H</em>. By leveraging Hamana's theory, we show that such a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-support is unique precisely when <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>S</mi><mo>)</mo></math></span> (the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebra generated in <span><math><mi>B</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> with the usual product) is contained in every copy of the injective envelope of <em>S</em> that acts on <em>H</em>. Further, we demonstrate how the uniqueness of certain <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-supports can be used to give new characterizations of the unique extension property for ⁎-representations, as well as the hyperrigidity of <em>S</em>. In another direction, we utilize the collection of all <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-supports of <em>S</em> to describe the subspace generated by the so-called abnormalities of <em>S</em>, thereby complementing an earlier result of Kakariadis.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"556 1","pages":"Article 130074"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25008558","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let S be a concrete operator system represented on some Hilbert space H. A C-support of S is the C-algebra generated (via the Choi–Effros product) by S inside an injective operator system acting on H. By leveraging Hamana's theory, we show that such a C-support is unique precisely when C(S) (the C-algebra generated in B(H) with the usual product) is contained in every copy of the injective envelope of S that acts on H. Further, we demonstrate how the uniqueness of certain C-supports can be used to give new characterizations of the unique extension property for ⁎-representations, as well as the hyperrigidity of S. In another direction, we utilize the collection of all C-supports of S to describe the subspace generated by the so-called abnormalities of S, thereby complementing an earlier result of Kakariadis.
C -操作系统的支持和异常
设S是表示在某个希尔伯特空间H上的一个具体算子系统。S的一个C支持是S在作用于H的一个单射算子系统中生成的C代数(通过Choi-Effros积)。通过利用Hamana的理论,我们证明了当C (S)(在B(H)中生成的带有通常积的C代数)包含在作用于H的S的每一个单射包络中时,这样的C支持是唯一的。我们证明了如何利用某些C -支持的唯一性来给出对C -表示的唯一性扩展性质的新描述,以及S的超刚性。在另一个方向上,我们利用S的所有C -支持的集合来描述由S的所谓异常产生的子空间,从而补充了Kakariadis的早期结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信