Revealing drivers of green technology adoption through explainable Artificial Intelligence

IF 13.8 Q1 ENERGY & FUELS
Dorothea Kistinger , Maurizio Titz , Philipp C. Böttcher , Michael T. Schaub , Sandra Venghaus , Dirk Witthaut
{"title":"Revealing drivers of green technology adoption through explainable Artificial Intelligence","authors":"Dorothea Kistinger ,&nbsp;Maurizio Titz ,&nbsp;Philipp C. Böttcher ,&nbsp;Michael T. Schaub ,&nbsp;Sandra Venghaus ,&nbsp;Dirk Witthaut","doi":"10.1016/j.adapen.2025.100242","DOIUrl":null,"url":null,"abstract":"<div><div>Effective governance of energy system transformation away from fossil resources requires a quantitative understanding of the diffusion of green technologies and its key influencing factors. In this article, we propose a novel machine learning approach to diffusion research focusing on actual decisions and spatial aspects complementing research on intentions and temporal dynamics. We develop machine learning models that predict regional differences in the accumulated peak power of household-scale photovoltaic systems and the share of battery electric vehicles from a large set of demographic, geographic, political, and socio-economic features. Tools from explainable artificial intelligence enable a consistent identification of the key influencing factors and quantify their impact. Focusing on data from German municipal associations, we identify common themes and differences in the adoption of green technologies. Specifically, the adoption of battery electric vehicles is strongly associated with income and election results, while the adoption of photovoltaic systems correlates with the prevalence of large dwellings and levels of global solar radiation.</div></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"20 ","pages":"Article 100242"},"PeriodicalIF":13.8000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666792425000368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Effective governance of energy system transformation away from fossil resources requires a quantitative understanding of the diffusion of green technologies and its key influencing factors. In this article, we propose a novel machine learning approach to diffusion research focusing on actual decisions and spatial aspects complementing research on intentions and temporal dynamics. We develop machine learning models that predict regional differences in the accumulated peak power of household-scale photovoltaic systems and the share of battery electric vehicles from a large set of demographic, geographic, political, and socio-economic features. Tools from explainable artificial intelligence enable a consistent identification of the key influencing factors and quantify their impact. Focusing on data from German municipal associations, we identify common themes and differences in the adoption of green technologies. Specifically, the adoption of battery electric vehicles is strongly associated with income and election results, while the adoption of photovoltaic systems correlates with the prevalence of large dwellings and levels of global solar radiation.
通过可解释的人工智能揭示绿色技术采用的驱动因素
对能源系统从化石资源转型的有效治理需要对绿色技术的扩散及其关键影响因素进行定量理解。在本文中,我们提出了一种新的机器学习方法来进行扩散研究,重点关注实际决策和空间方面,补充了意图和时间动态的研究。我们开发了机器学习模型,从大量的人口、地理、政治和社会经济特征中预测家庭规模光伏系统累积峰值功率的区域差异和电池电动汽车的份额。来自可解释人工智能的工具能够一致地识别关键影响因素并量化其影响。关注德国市政协会的数据,我们确定了采用绿色技术的共同主题和差异。具体来说,电池电动汽车的采用与收入和选举结果密切相关,而光伏系统的采用与大型住宅的普及和全球太阳辐射水平有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Energy
Advances in Applied Energy Energy-General Energy
CiteScore
23.90
自引率
0.00%
发文量
36
审稿时长
21 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信