Componentwise and normwise perturbation analysis for the anti-triangular Schur decomposition

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Jia Yan Wu , Xiao Shan Chen , Hai–Wei Sun
{"title":"Componentwise and normwise perturbation analysis for the anti-triangular Schur decomposition","authors":"Jia Yan Wu ,&nbsp;Xiao Shan Chen ,&nbsp;Hai–Wei Sun","doi":"10.1016/j.cam.2025.117092","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents componentwise and new normwise perturbation bounds for the anti-triangular Schur decomposition of a square matrix. In particular, we derive sensitivity estimates and condition numbers of eigenvalues and <span><math><mi>Z</mi></math></span>-isotropic subspaces and improve the normwise condition number of such decomposition given by Chen, Li and Ng [SIAM J. Matrix Anal., 33(2012): 325–335]. Numerical examples are given to test the obtained bounds.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"476 ","pages":"Article 117092"},"PeriodicalIF":2.6000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725006065","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents componentwise and new normwise perturbation bounds for the anti-triangular Schur decomposition of a square matrix. In particular, we derive sensitivity estimates and condition numbers of eigenvalues and Z-isotropic subspaces and improve the normwise condition number of such decomposition given by Chen, Li and Ng [SIAM J. Matrix Anal., 33(2012): 325–335]. Numerical examples are given to test the obtained bounds.
反三角Schur分解的分量和正态摄动分析
本文给出了方阵反三角Schur分解的分量摄动界和新的正态摄动界。特别地,我们导出了特征值和z各向同性子空间的敏感性估计和条件数,并改进了Chen, Li和Ng给出的这种分解的正态条件数[SIAM J. Matrix Anal]。农业学报,33(2012):325-335。最后给出了数值例子来验证所得到的边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信