Low-rank approximation: Randomized QR with Column Pivoting and related methods using sparse projection and pass-efficient techniques

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Ying Ji , Yuehua Feng , Yongxin Dong , Jinrui Guan , Xiao Han
{"title":"Low-rank approximation: Randomized QR with Column Pivoting and related methods using sparse projection and pass-efficient techniques","authors":"Ying Ji ,&nbsp;Yuehua Feng ,&nbsp;Yongxin Dong ,&nbsp;Jinrui Guan ,&nbsp;Xiao Han","doi":"10.1016/j.cam.2025.117091","DOIUrl":null,"url":null,"abstract":"<div><div>Currently, several efficient algorithms utilize randomization techniques to compute low-rank matrix approximations, such as Randomized QR with Column Pivoting (RQRCP) and Flip-Flop spectrum-revealing QR (FFSRQR). While these algorithms have achieved notable efficiency in dealing with large-scale low-rank matrix approximations, there is still scope for improvement. This paper introduces an improved version of the RQRCP algorithm, enhanced by incorporating a sparse embedding matrix (SEM) for sparse projection, referred to as RQRCP-SEM. Furthermore, building on RQRCP-SEM and employing pass-efficient techniques, this paper proposes two versions of the PEFFSRQR-SEM algorithm to further optimize the efficiency of the FFSRQR algorithm. The paper theoretically analyzes the approximation error and computational complexity of these new algorithms and validates these analyses through numerical experiments.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"476 ","pages":"Article 117091"},"PeriodicalIF":2.6000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725006053","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, several efficient algorithms utilize randomization techniques to compute low-rank matrix approximations, such as Randomized QR with Column Pivoting (RQRCP) and Flip-Flop spectrum-revealing QR (FFSRQR). While these algorithms have achieved notable efficiency in dealing with large-scale low-rank matrix approximations, there is still scope for improvement. This paper introduces an improved version of the RQRCP algorithm, enhanced by incorporating a sparse embedding matrix (SEM) for sparse projection, referred to as RQRCP-SEM. Furthermore, building on RQRCP-SEM and employing pass-efficient techniques, this paper proposes two versions of the PEFFSRQR-SEM algorithm to further optimize the efficiency of the FFSRQR algorithm. The paper theoretically analyzes the approximation error and computational complexity of these new algorithms and validates these analyses through numerical experiments.
低秩近似:随机QR与列枢轴和相关方法使用稀疏投影和传递效率技术
目前,有几种有效的算法利用随机化技术来计算低秩矩阵近似,如随机QR与列旋转(RQRCP)和触发器频谱揭示QR (FFSRQR)。虽然这些算法在处理大规模低秩矩阵近似方面取得了显著的效率,但仍有改进的余地。本文介绍了RQRCP算法的改进版本,通过加入稀疏嵌入矩阵(SEM)进行稀疏投影,称为RQRCP-SEM。此外,本文在RQRCP-SEM的基础上,采用pass-efficient技术,提出了两个版本的PEFFSRQR-SEM算法,进一步优化了FFSRQR算法的效率。本文从理论上分析了这些新算法的逼近误差和计算复杂度,并通过数值实验对分析结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信