Tunable wide- and narrow-band terahertz metamaterial absorber using vanadium dioxide

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
Huo Zhang , Shilong Zhou , Chuanpei Xu , Zhi Li , Yuee Wang , Xianhua Yin , Tao Chen
{"title":"Tunable wide- and narrow-band terahertz metamaterial absorber using vanadium dioxide","authors":"Huo Zhang ,&nbsp;Shilong Zhou ,&nbsp;Chuanpei Xu ,&nbsp;Zhi Li ,&nbsp;Yuee Wang ,&nbsp;Xianhua Yin ,&nbsp;Tao Chen","doi":"10.1016/j.physb.2025.417826","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid development of terahertz metamaterial absorbers, tunable devices are critical for electromagnetic modulation. This study proposes a phase-transition-driven metamaterial absorber with switchable bandwidth, utilizing vanadium dioxide (VO<sub>2</sub>)'s metal-insulator transition (MIT). Its tri-layer structure includes a gold (Au) bottom plane, polytetrafluoroethylene (PTFE) spacer, and VO<sub>2</sub>-gold (Au) resonator array. Simulations show two modes: metallic VO<sub>2</sub> enables ultra-broadband absorption (2.97–7.12 THz, &gt;90 %); insulating VO<sub>2</sub> exhibits narrowband resonance at 9.43 THz (&gt;99 % absorbance) with quality factor 204.1 and sensitivity 1018 GHz/RIU. It operates polarization-insensitively with &gt;90 % absorption at 50° incidence. This dual-functional design breaks traditional stealth material limitations via adjustable bandwidth, integrates stealth and sensing, and offers new possibilities for adaptive terahertz systems in military camouflage, environmental monitoring, and biomedical fields.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"717 ","pages":"Article 417826"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625009433","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid development of terahertz metamaterial absorbers, tunable devices are critical for electromagnetic modulation. This study proposes a phase-transition-driven metamaterial absorber with switchable bandwidth, utilizing vanadium dioxide (VO2)'s metal-insulator transition (MIT). Its tri-layer structure includes a gold (Au) bottom plane, polytetrafluoroethylene (PTFE) spacer, and VO2-gold (Au) resonator array. Simulations show two modes: metallic VO2 enables ultra-broadband absorption (2.97–7.12 THz, >90 %); insulating VO2 exhibits narrowband resonance at 9.43 THz (>99 % absorbance) with quality factor 204.1 and sensitivity 1018 GHz/RIU. It operates polarization-insensitively with >90 % absorption at 50° incidence. This dual-functional design breaks traditional stealth material limitations via adjustable bandwidth, integrates stealth and sensing, and offers new possibilities for adaptive terahertz systems in military camouflage, environmental monitoring, and biomedical fields.
使用二氧化钒的可调谐宽窄带太赫兹超材料吸收器
随着太赫兹超材料吸收器的快速发展,可调谐器件成为实现电磁调制的关键。本研究利用二氧化钒(VO2)的金属-绝缘体转变(MIT),提出了一种具有可切换带宽的相变驱动的超材料吸收体。其三层结构包括金(Au)底平面、聚四氟乙烯(PTFE)间隔层和vo2金(Au)谐振器阵列。模拟显示了两种模式:金属VO2实现了超宽带吸收(2.97-7.12 THz, > 90%);绝缘VO2在9.43 THz (>; 99%吸光度)处表现出窄带共振,质量因子为204.1,灵敏度为1018 GHz/RIU。在50°入射下,它的吸收率为90%,对偏振不敏感。这种双功能设计通过可调带宽打破了传统隐身材料的限制,集成了隐身和传感,并为军事伪装、环境监测和生物医学领域的自适应太赫兹系统提供了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信