Exploring oxygen dissociation on hexagonal boron nitride: Insight from high-temperature molecular dynamics simulation

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
Sara Fazeli , Pascal Brault , Marjorie Cavarroc-Weimer , Edern Menou , Thomas Perez , Nicolas Froloff
{"title":"Exploring oxygen dissociation on hexagonal boron nitride: Insight from high-temperature molecular dynamics simulation","authors":"Sara Fazeli ,&nbsp;Pascal Brault ,&nbsp;Marjorie Cavarroc-Weimer ,&nbsp;Edern Menou ,&nbsp;Thomas Perez ,&nbsp;Nicolas Froloff","doi":"10.1016/j.physb.2025.417808","DOIUrl":null,"url":null,"abstract":"<div><div>Hexagonal boron nitride (h-BN), known for its exceptional thermal and chemical stability, is widely used in high-temperature applications and as an encapsulation layer for other two-dimensional materials. This study examines the dissociation mechanisms of O<sub>2</sub> molecules on the h-BN surface, focusing on activation energies and minimum energy pathways at different adsorption sites using climbing-image nudged elastic band (CI-NEB) calculations. The results reveal several dissociation pathways with significant variations in activation barriers depending on site and configuration, including one low-barrier route favorable for surface reactions. Reactive molecular dynamics (RMD) simulations with the ReaxFF force field are employed to investigate oxidation behavior in multilayer h-BN at 900 K, 1200 K, and 1500 K. At 900 K, O<sub>2</sub> adsorbs without penetrating beneath the surface, while higher temperatures enhance dissociation and promote deeper oxygen incorporation. Charge analysis at elevated temperatures shows stronger chemisorption and electron transfer, forming a more uniform, chemically bonded oxygen layer.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"717 ","pages":"Article 417808"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625009251","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Hexagonal boron nitride (h-BN), known for its exceptional thermal and chemical stability, is widely used in high-temperature applications and as an encapsulation layer for other two-dimensional materials. This study examines the dissociation mechanisms of O2 molecules on the h-BN surface, focusing on activation energies and minimum energy pathways at different adsorption sites using climbing-image nudged elastic band (CI-NEB) calculations. The results reveal several dissociation pathways with significant variations in activation barriers depending on site and configuration, including one low-barrier route favorable for surface reactions. Reactive molecular dynamics (RMD) simulations with the ReaxFF force field are employed to investigate oxidation behavior in multilayer h-BN at 900 K, 1200 K, and 1500 K. At 900 K, O2 adsorbs without penetrating beneath the surface, while higher temperatures enhance dissociation and promote deeper oxygen incorporation. Charge analysis at elevated temperatures shows stronger chemisorption and electron transfer, forming a more uniform, chemically bonded oxygen layer.

Abstract Image

探索六方氮化硼的氧解离:来自高温分子动力学模拟的见解
六方氮化硼(h-BN)以其优异的热稳定性和化学稳定性而闻名,广泛用于高温应用和其他二维材料的封装层。本研究考察了氧分子在h-BN表面的解离机制,重点研究了不同吸附位点的活化能和最小能途径,采用了爬升图像轻推弹性带(CI-NEB)计算。结果揭示了几种解离途径,根据位置和构型的不同,激活障碍有显著变化,包括有利于表面反应的低障碍途径。采用ReaxFF力场的反应分子动力学(RMD)模拟研究了多层h-BN在900 K、1200 K和1500 K下的氧化行为。在900 K时,氧不穿透表面,而更高的温度增强解离,促进更深的氧结合。在高温下的电荷分析显示出更强的化学吸附和电子转移,形成更均匀的化学键合氧层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信