Nene Lefaible , Carl Van Colen , Christelle Jammar , Jan Vanaverbeke , Tom Moens , Sven Van Haelst , Alain Norro , Steven Degraer , Ulrike Braeckman
{"title":"Laying out the foundations: Assessing the spatial extent and drivers of offshore wind turbine artificial reef effects on soft sediments","authors":"Nene Lefaible , Carl Van Colen , Christelle Jammar , Jan Vanaverbeke , Tom Moens , Sven Van Haelst , Alain Norro , Steven Degraer , Ulrike Braeckman","doi":"10.1016/j.seares.2025.102631","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid expansion of offshore energy, numerous artificial structures are being installed on the seabed, including wind turbine foundations. This study investigates the “artificial reef” (AR) effect of bottom-fixed offshore wind farms (OWFs) on soft sediment benthic communities. While previous studies have focused on distances ≥30 m from turbines, in this study, sediment and macrobenthic samples were collected at shorter distances (1 m, 7 m, 15 m and 25 m) from the scour protection layer (SPL) around a monopile and a gravity-based foundation in two Belgian OWFs, 10–13 years post-installation. Results show a localized AR footprint for both turbine foundations, with enriched benthic communities within 15 m of the SPL. In comparison to communities 25 m distanced away from the SPL, a higher average species richness (+100 %), abundance (+117 %), functional richness (+438 %), and bioturbation potential (+86 %) was prevalent, whereas the magnitude of enriched structural and functional diversity in the footprint varied respectively between 16 and 80 % and 15–110 % depending on the OWF. Beyond the AR footprint, communities resembled those at reference sites (240–570 m), with less surface dwellers, suspension feeders and a prevalence of burrowing biodiffusors that contribute little to bioturbation. While the AR effect's magnitude depends on local conditions and foundation design, our trait-based analysis indicates that sediment fining, biofouling drop-offs and organic enrichment are consistent drivers shaping the AR footprint.</div></div>","PeriodicalId":50056,"journal":{"name":"Journal of Sea Research","volume":"208 ","pages":"Article 102631"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sea Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138511012500070X","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid expansion of offshore energy, numerous artificial structures are being installed on the seabed, including wind turbine foundations. This study investigates the “artificial reef” (AR) effect of bottom-fixed offshore wind farms (OWFs) on soft sediment benthic communities. While previous studies have focused on distances ≥30 m from turbines, in this study, sediment and macrobenthic samples were collected at shorter distances (1 m, 7 m, 15 m and 25 m) from the scour protection layer (SPL) around a monopile and a gravity-based foundation in two Belgian OWFs, 10–13 years post-installation. Results show a localized AR footprint for both turbine foundations, with enriched benthic communities within 15 m of the SPL. In comparison to communities 25 m distanced away from the SPL, a higher average species richness (+100 %), abundance (+117 %), functional richness (+438 %), and bioturbation potential (+86 %) was prevalent, whereas the magnitude of enriched structural and functional diversity in the footprint varied respectively between 16 and 80 % and 15–110 % depending on the OWF. Beyond the AR footprint, communities resembled those at reference sites (240–570 m), with less surface dwellers, suspension feeders and a prevalence of burrowing biodiffusors that contribute little to bioturbation. While the AR effect's magnitude depends on local conditions and foundation design, our trait-based analysis indicates that sediment fining, biofouling drop-offs and organic enrichment are consistent drivers shaping the AR footprint.
期刊介绍:
The Journal of Sea Research is an international and multidisciplinary periodical on marine research, with an emphasis on the functioning of marine ecosystems in coastal and shelf seas, including intertidal, estuarine and brackish environments. As several subdisciplines add to this aim, manuscripts are welcome from the fields of marine biology, marine chemistry, marine sedimentology and physical oceanography, provided they add to the understanding of ecosystem processes.