Modified biogenic nanocellulose and PHB from cacao fruit waste for enhanced mechanical and barrier performance of PHBV films

IF 6.5 Q1 CHEMISTRY, APPLIED
Maria A. Gamboa-Suárez , Néstor C.Posada Rubiano , Silvia J. Suárez-Rodríguez , Cristian Blanco-Tirado , Cesar A. Sierra , Mabel J. Quintero-Silva , Marianny Y. Combariza
{"title":"Modified biogenic nanocellulose and PHB from cacao fruit waste for enhanced mechanical and barrier performance of PHBV films","authors":"Maria A. Gamboa-Suárez ,&nbsp;Néstor C.Posada Rubiano ,&nbsp;Silvia J. Suárez-Rodríguez ,&nbsp;Cristian Blanco-Tirado ,&nbsp;Cesar A. Sierra ,&nbsp;Mabel J. Quintero-Silva ,&nbsp;Marianny Y. Combariza","doi":"10.1016/j.carpta.2025.101010","DOIUrl":null,"url":null,"abstract":"<div><div>Growing demand for sustainable packaging materials has intensified interest in polyhydroxyalkanoates (PHAs) as biodegradable alternatives to plastics. Among these, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a commercially available copolymer, shows promise for packaging but is hindered by limited mechanical strength and poor moisture resistance. We explore a biotechnological strategy to enhance PHBV film performance using two additives produced via microbial fermentation of effluents from cacao fruit processing: (i) TEMPO-oxidized bacterial cellulose (BC-TOCN) chemically modified by amidation with octadecyl amine (BC-TOCN-AMD C-18), and (ii) low-molecular-weight polyhydroxybutyrate (PHB). Hydrophobization of BC-TOCN-AMD C-18 was confirmed by a maximum water contact angle of 147°, higher than unmodified BC-TOCN, and decreased surface free energy (SFE) with minimal polar contribution.</div><div>Incorporating the two additives into PHBV films formed by melt extrusion increased the water contact angle from 89 to 112°, enhanced tensile strength from 0.50 to 5.5 MPa, and improved surface smoothness. Additionally, the films show 10.47 % reduction in water permeability and 9.54 % decrease in oxygen permeability compared to neat PHBV. These effects are attributed to synergistic interactions promoting improved dispersion and interfacial compatibility. The results highlight the potential of BC-based nanomaterials and homopolymeric PHB to modulate PHBV properties, supporting applications in sustainable packaging requiring moisture control and biodegradability.</div></div>","PeriodicalId":100213,"journal":{"name":"Carbohydrate Polymer Technologies and Applications","volume":"12 ","pages":"Article 101010"},"PeriodicalIF":6.5000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymer Technologies and Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666893925003500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Growing demand for sustainable packaging materials has intensified interest in polyhydroxyalkanoates (PHAs) as biodegradable alternatives to plastics. Among these, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a commercially available copolymer, shows promise for packaging but is hindered by limited mechanical strength and poor moisture resistance. We explore a biotechnological strategy to enhance PHBV film performance using two additives produced via microbial fermentation of effluents from cacao fruit processing: (i) TEMPO-oxidized bacterial cellulose (BC-TOCN) chemically modified by amidation with octadecyl amine (BC-TOCN-AMD C-18), and (ii) low-molecular-weight polyhydroxybutyrate (PHB). Hydrophobization of BC-TOCN-AMD C-18 was confirmed by a maximum water contact angle of 147°, higher than unmodified BC-TOCN, and decreased surface free energy (SFE) with minimal polar contribution.
Incorporating the two additives into PHBV films formed by melt extrusion increased the water contact angle from 89 to 112°, enhanced tensile strength from 0.50 to 5.5 MPa, and improved surface smoothness. Additionally, the films show 10.47 % reduction in water permeability and 9.54 % decrease in oxygen permeability compared to neat PHBV. These effects are attributed to synergistic interactions promoting improved dispersion and interfacial compatibility. The results highlight the potential of BC-based nanomaterials and homopolymeric PHB to modulate PHBV properties, supporting applications in sustainable packaging requiring moisture control and biodegradability.

Abstract Image

从可可果渣中改性生物源纳米纤维素和PHB,以提高PHBV薄膜的机械性能和阻隔性能
对可持续包装材料的需求日益增长,增强了人们对聚羟基烷酸酯(pha)作为塑料的可生物降解替代品的兴趣。其中,聚(3-羟基丁酸酯-co-3-羟基戊酸酯)(PHBV)是一种商用共聚物,在包装方面表现出前景,但由于机械强度有限和耐湿气性差而受到阻碍。我们探索了一种生物技术策略,通过微生物发酵可可果加工废水产生的两种添加剂来提高PHBV膜的性能:(i)用十八烷基胺酰胺化修饰的tempo氧化细菌纤维素(BC-TOCN) (BC-TOCN- amd C-18),以及(ii)低分子量聚羟基丁酸酯(PHB)。BC-TOCN- amd C-18的最大水接触角为147°,高于未改性的BC-TOCN,表面自由能(SFE)下降,极性贡献最小,证实了BC-TOCN- amd C-18的疏水作用。在熔融挤压成型的PHBV薄膜中加入这两种添加剂,水接触角从89°增加到112°,抗拉强度从0.50 MPa提高到5.5 MPa,表面光滑度得到改善。此外,与纯PHBV相比,膜的透水性降低了10.47%,氧渗透率降低了9.54%。这些效应是由于协同作用促进了分散和界面相容性的改善。研究结果强调了bc基纳米材料和均聚PHB在调节PHBV性能方面的潜力,支持了需要控制水分和生物降解性的可持续包装的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信