Layer potential method for a Robin problem in Hardy spaces

IF 1.2 3区 数学 Q1 MATHEMATICS
Huynh Cao Truong , Le Xuan Truong , Tan Duc Do , Nguyen Ngoc Trong
{"title":"Layer potential method for a Robin problem in Hardy spaces","authors":"Huynh Cao Truong ,&nbsp;Le Xuan Truong ,&nbsp;Tan Duc Do ,&nbsp;Nguyen Ngoc Trong","doi":"10.1016/j.jmaa.2025.130075","DOIUrl":null,"url":null,"abstract":"<div><div>Let Ω be a bounded Lipschitz domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> with <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>. Within an appropriate framework, we use the layer potential method to show that the Robin problem<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mi>div</mi><mo>(</mo><mi>A</mi><mspace></mspace><mi>∇</mi><mi>u</mi><mo>)</mo><mo>=</mo><mn>0</mn><mspace></mspace><mtext>in </mtext><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mo>(</mo><mi>A</mi><mspace></mspace><mi>∇</mi><mi>u</mi><mo>)</mo><mo>⋅</mo><mi>ν</mi><mo>(</mo><mi>Q</mi><mo>)</mo><mo>+</mo><mi>b</mi><mi>u</mi><mo>(</mo><mi>Q</mi><mo>)</mo><mo>=</mo><mi>g</mi><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mo>∂</mo><mi>Ω</mi><mo>)</mo><mo>,</mo></mtd></mtr><mtr><mtd><msup><mrow><mo>(</mo><mi>∇</mi><mi>u</mi><mo>)</mo></mrow><mrow><mo>⁎</mo></mrow></msup><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mo>∂</mo><mi>Ω</mi><mo>)</mo></mtd></mtr></mtable></mrow></math></span></span></span> is uniquely solvable for all <span><math><mn>1</mn><mo>−</mo><mi>ϵ</mi><mo>&lt;</mo><mi>p</mi><mo>≤</mo><mn>1</mn></math></span>, where <span><math><mi>ϵ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac><mo>)</mo></math></span> is a suitable constant depending on the Lipschitz character of ∂Ω and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mo>∂</mo><mi>Ω</mi><mo>)</mo></math></span> denotes the atomic Hardy space on the boundary of Ω.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"555 2","pages":"Article 130075"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X2500856X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let Ω be a bounded Lipschitz domain in Rn with n3. Within an appropriate framework, we use the layer potential method to show that the Robin problem{div(Au)=0in Ω,(Au)ν(Q)+bu(Q)=gHp(Ω),(u)Lp(Ω) is uniquely solvable for all 1ϵ<p1, where ϵ(0,1n) is a suitable constant depending on the Lipschitz character of ∂Ω and Hp(Ω) denotes the atomic Hardy space on the boundary of Ω.
Hardy空间中Robin问题的层势法
设Ω为Rn中n≥3的有界Lipschitz定义域。在适当的框架内,我们使用层势方法来证明Robin问题{−div(A∇u)=0in Ω,(A∇u)⋅ν(Q)+bu(Q)=g∈Hp(∂Ω),(∇u)∈Lp(∂Ω)对于所有1−ϵ<;p≤1是唯一可解的,其中λ∈(0,1n)是一个合适的常数,取决于∂Ω的Lipschitz特征,Hp(∂Ω)表示Ω边界上的原子Hardy空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信