Huynh Cao Truong , Le Xuan Truong , Tan Duc Do , Nguyen Ngoc Trong
{"title":"Layer potential method for a Robin problem in Hardy spaces","authors":"Huynh Cao Truong , Le Xuan Truong , Tan Duc Do , Nguyen Ngoc Trong","doi":"10.1016/j.jmaa.2025.130075","DOIUrl":null,"url":null,"abstract":"<div><div>Let Ω be a bounded Lipschitz domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> with <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>. Within an appropriate framework, we use the layer potential method to show that the Robin problem<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mi>div</mi><mo>(</mo><mi>A</mi><mspace></mspace><mi>∇</mi><mi>u</mi><mo>)</mo><mo>=</mo><mn>0</mn><mspace></mspace><mtext>in </mtext><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mo>(</mo><mi>A</mi><mspace></mspace><mi>∇</mi><mi>u</mi><mo>)</mo><mo>⋅</mo><mi>ν</mi><mo>(</mo><mi>Q</mi><mo>)</mo><mo>+</mo><mi>b</mi><mi>u</mi><mo>(</mo><mi>Q</mi><mo>)</mo><mo>=</mo><mi>g</mi><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mo>∂</mo><mi>Ω</mi><mo>)</mo><mo>,</mo></mtd></mtr><mtr><mtd><msup><mrow><mo>(</mo><mi>∇</mi><mi>u</mi><mo>)</mo></mrow><mrow><mo>⁎</mo></mrow></msup><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mo>∂</mo><mi>Ω</mi><mo>)</mo></mtd></mtr></mtable></mrow></math></span></span></span> is uniquely solvable for all <span><math><mn>1</mn><mo>−</mo><mi>ϵ</mi><mo><</mo><mi>p</mi><mo>≤</mo><mn>1</mn></math></span>, where <span><math><mi>ϵ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac><mo>)</mo></math></span> is a suitable constant depending on the Lipschitz character of ∂Ω and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mo>∂</mo><mi>Ω</mi><mo>)</mo></math></span> denotes the atomic Hardy space on the boundary of Ω.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"555 2","pages":"Article 130075"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X2500856X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let Ω be a bounded Lipschitz domain in with . Within an appropriate framework, we use the layer potential method to show that the Robin problem is uniquely solvable for all , where is a suitable constant depending on the Lipschitz character of ∂Ω and denotes the atomic Hardy space on the boundary of Ω.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.