DS-HBI: Dual-stream fusion forecasting model with historical backfilling imputation

IF 15.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Dezhi Sun , Jiwei Qin , Weilin Tang , Xizhong Qin , Fei Shi , Minrui Wang , Zhenliang Liao
{"title":"DS-HBI: Dual-stream fusion forecasting model with historical backfilling imputation","authors":"Dezhi Sun ,&nbsp;Jiwei Qin ,&nbsp;Weilin Tang ,&nbsp;Xizhong Qin ,&nbsp;Fei Shi ,&nbsp;Minrui Wang ,&nbsp;Zhenliang Liao","doi":"10.1016/j.inffus.2025.103761","DOIUrl":null,"url":null,"abstract":"<div><div>Deep learning models demonstrate significant potential for atmospheric carbon concentration forecasting, yet confront dual challenges of pervasive data missingness in real-world monitoring scenarios and intricate multivariate dynamic interactions. This paper proposes a <strong>Dual-Stream fusion forecasting model with Historical Backfilling Imputation (DS-HBI)</strong>, a parallel architectural framework that resolves these challenges through dual-modal complementary pathways. The first pathway processed raw incomplete sequences via masked self-attention to capture intrinsic patterns without imputation bias. In contrast, the second integrates dynamic time warping (DTW) and probabilistic imputation to reconstruct temporally consistent data. A gated attention mechanism dynamically fuses both streams, adaptively balancing their contributions to jointly capture multi-scale temporal features, including long-term trends and abrupt changes, while ensuring robustness under severe data missingness. Evaluated on multi-site Total Carbon Column Observing Network (TCCON) data, DS-HBI demonstrates superior performance in predicting <span><math><mrow><msub><mtext>XCO</mtext><mn>2</mn></msub></mrow></math></span> and <span><math><mrow><msub><mtext>XCH</mtext><mn>4</mn></msub></mrow></math></span>, significantly reducing prediction errors compared to baseline methods. The model particularly excels in high missing-rate scenarios, with ablation studies confirming the necessity of its dual-stream design and hybrid imputation strategy.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"127 ","pages":"Article 103761"},"PeriodicalIF":15.5000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253525008231","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning models demonstrate significant potential for atmospheric carbon concentration forecasting, yet confront dual challenges of pervasive data missingness in real-world monitoring scenarios and intricate multivariate dynamic interactions. This paper proposes a Dual-Stream fusion forecasting model with Historical Backfilling Imputation (DS-HBI), a parallel architectural framework that resolves these challenges through dual-modal complementary pathways. The first pathway processed raw incomplete sequences via masked self-attention to capture intrinsic patterns without imputation bias. In contrast, the second integrates dynamic time warping (DTW) and probabilistic imputation to reconstruct temporally consistent data. A gated attention mechanism dynamically fuses both streams, adaptively balancing their contributions to jointly capture multi-scale temporal features, including long-term trends and abrupt changes, while ensuring robustness under severe data missingness. Evaluated on multi-site Total Carbon Column Observing Network (TCCON) data, DS-HBI demonstrates superior performance in predicting XCO2 and XCH4, significantly reducing prediction errors compared to baseline methods. The model particularly excels in high missing-rate scenarios, with ablation studies confirming the necessity of its dual-stream design and hybrid imputation strategy.
DS-HBI:具有历史回填数据的双流融合预测模型
深度学习模型在大气碳浓度预测方面显示出巨大的潜力,但面临着现实监测场景中普遍存在的数据缺失和复杂的多元动态相互作用的双重挑战。本文提出了一种具有历史回填法(DS-HBI)的双流融合预测模型,这是一种通过双模态互补路径解决这些挑战的并行架构框架。第一种途径通过掩盖自我注意来处理原始的不完整序列,以捕获无imputation偏差的内在模式。相比之下,第二种方法集成了动态时间规整(DTW)和概率插值来重建时间一致的数据。一种门控注意机制动态融合这两种流,自适应平衡它们的贡献,共同捕获多尺度时间特征,包括长期趋势和突变,同时确保在严重数据缺失下的鲁棒性。通过对多站点TCCON (Total Carbon Column Observing Network)数据的评估,DS-HBI在预测XCO2和XCH4方面表现出优异的性能,与基线方法相比显著降低了预测误差。该模型在高漏失率情况下尤其出色,烧蚀研究证实了其双流设计和混合imputation策略的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信