L2-exponential stability and impulsive stabilization of neutral stochastic delay differential equations

IF 3.7 2区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Hoang Thi Duyen , Ky Quan Tran
{"title":"L2-exponential stability and impulsive stabilization of neutral stochastic delay differential equations","authors":"Hoang Thi Duyen ,&nbsp;Ky Quan Tran","doi":"10.1016/j.nahs.2025.101647","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-exponential stability – also known as exponential stability in the mean square – of neutral stochastic delay differential equations with impulsive perturbations. Our primary objective is to stabilize an impulsive-free system by appropriately designing impulsive controls. Unlike previous studies, we introduce new and verifiable criteria for <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-exponential stability. We further demonstrate that Euler–Maruyama-type approximations preserve <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-exponential stability provided that the step sizes are sufficiently small; explicit conditions on these step sizes are derived. Moreover, we detail the design of impulsive perturbations that achieve <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-exponential stabilization. Two examples are presented to validate the effectiveness of our criteria.</div></div>","PeriodicalId":49011,"journal":{"name":"Nonlinear Analysis-Hybrid Systems","volume":"59 ","pages":"Article 101647"},"PeriodicalIF":3.7000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Hybrid Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751570X25000731","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates L2-exponential stability – also known as exponential stability in the mean square – of neutral stochastic delay differential equations with impulsive perturbations. Our primary objective is to stabilize an impulsive-free system by appropriately designing impulsive controls. Unlike previous studies, we introduce new and verifiable criteria for L2-exponential stability. We further demonstrate that Euler–Maruyama-type approximations preserve L2-exponential stability provided that the step sizes are sufficiently small; explicit conditions on these step sizes are derived. Moreover, we detail the design of impulsive perturbations that achieve L2-exponential stabilization. Two examples are presented to validate the effectiveness of our criteria.
中立型随机时滞微分方程的l2 -指数稳定性和脉冲镇定性
本文研究了具有脉冲扰动的中立型随机时滞微分方程的l2 -指数稳定性,即均方指数稳定性。我们的主要目标是通过适当设计脉冲控制来稳定无脉冲系统。与以往的研究不同,我们引入了新的可验证的l2指数稳定性准则。我们进一步证明,当步长足够小时,euler - maruyama型近似保持l2指数稳定性;导出了这些步长的显式条件。此外,我们还详细介绍了实现l2指数稳定的脉冲扰动的设计。给出了两个例子来验证我们的标准的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nonlinear Analysis-Hybrid Systems
Nonlinear Analysis-Hybrid Systems AUTOMATION & CONTROL SYSTEMS-MATHEMATICS, APPLIED
CiteScore
8.30
自引率
9.50%
发文量
65
审稿时长
>12 weeks
期刊介绍: Nonlinear Analysis: Hybrid Systems welcomes all important research and expository papers in any discipline. Papers that are principally concerned with the theory of hybrid systems should contain significant results indicating relevant applications. Papers that emphasize applications should consist of important real world models and illuminating techniques. Papers that interrelate various aspects of hybrid systems will be most welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信