Ethan N. Epperly , Gil Goldshlager , Robert J. Webber
{"title":"Randomized Kaczmarz with tail averaging","authors":"Ethan N. Epperly , Gil Goldshlager , Robert J. Webber","doi":"10.1016/j.acha.2025.101812","DOIUrl":null,"url":null,"abstract":"<div><div>The randomized Kaczmarz (RK) method is a well-known approach for solving linear least-squares problems with a large number of rows. RK accesses and processes just one row at a time, leading to exponentially fast convergence for consistent linear systems. However, RK fails to converge to the least-squares solution for inconsistent systems. This work presents a simple fix: average the RK iterates produced in the tail part of the algorithm. The proposed tail-averaged randomized Kaczmarz (TARK) converges for both consistent and inconsistent least-squares problems at a polynomial rate, which is known to be optimal for any row-access method. An extension of TARK also leads to efficient solutions for ridge-regularized least-squares problems.</div></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"80 ","pages":"Article 101812"},"PeriodicalIF":3.2000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520325000661","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The randomized Kaczmarz (RK) method is a well-known approach for solving linear least-squares problems with a large number of rows. RK accesses and processes just one row at a time, leading to exponentially fast convergence for consistent linear systems. However, RK fails to converge to the least-squares solution for inconsistent systems. This work presents a simple fix: average the RK iterates produced in the tail part of the algorithm. The proposed tail-averaged randomized Kaczmarz (TARK) converges for both consistent and inconsistent least-squares problems at a polynomial rate, which is known to be optimal for any row-access method. An extension of TARK also leads to efficient solutions for ridge-regularized least-squares problems.
期刊介绍:
Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.