{"title":"An enhanced hybrid optimization model for renewable energy storage: Integrating GWO and WOA, with Lévy mechanisms","authors":"Ercan Erkalkan","doi":"10.1016/j.suscom.2025.101207","DOIUrl":null,"url":null,"abstract":"<div><div>This study addresses renewable-energy storage scheduling — a high-dimensional, multimodal optimization task — by proposing an enhanced Grey Wolf–Whale Optimization Algorithm (EGW–WOA). The method fuses GWO’s hierarchical leadership with WOA’s spiral exploitation and augments them with Lévy flights and progress-triggered chaotic re-initialization. Across 100 Monte-Carlo trials, EGW–WOAreduced 24<!--> <!-->h operating cost to <span><math><mrow><mn>2</mn><mo>.</mo><mn>94</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup><mo>±</mo><mn>7</mn><mo>.</mo><mn>97</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span>, improving over WOA by 16.62%, GA by 10.15%, FPA by 63.6%, and HS by 80.76%, with a 100% feasibility rate. It achieved the lowest dispersion (Std <span><math><mrow><mo>=</mo><mn>7</mn><mo>.</mo><mn>97</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span>; Max–Min spread <span><math><mrow><mo>=</mo><mn>3</mn><mo>.</mo><mn>82</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span>), shaved peak-demand charges by <span><math><mo>≈</mo></math></span>9%, and limited depth-of-discharge swings to <span><math><mrow><mo><</mo><mn>35</mn></mrow></math></span>%, projecting a 12%–18% life extension. A 50-iteration run completed in 38.6<!--> <!-->s on a 3.4<!--> <!-->GHz CPU — over <span><math><mrow><mn>20</mn><mo>×</mo></mrow></math></span> faster than a comparable MILP baseline — demonstrating suitability for near-real-time PV–wind microgrid control. Within the scope of <em>Sustainable Computing: Informatics and Systems</em>, this work delivers a reproducible, open-source optimization engine with non-parametric statistical validation and edge-suitable runtimes, linking algorithmic advances to system-level sustainability metrics (LCOS, demand charges). The results show how algorithm–system co-design can lower operating cost and risk while preserving battery health in cyber–physical energy systems.</div></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"48 ","pages":"Article 101207"},"PeriodicalIF":5.7000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210537925001283","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
This study addresses renewable-energy storage scheduling — a high-dimensional, multimodal optimization task — by proposing an enhanced Grey Wolf–Whale Optimization Algorithm (EGW–WOA). The method fuses GWO’s hierarchical leadership with WOA’s spiral exploitation and augments them with Lévy flights and progress-triggered chaotic re-initialization. Across 100 Monte-Carlo trials, EGW–WOAreduced 24 h operating cost to , improving over WOA by 16.62%, GA by 10.15%, FPA by 63.6%, and HS by 80.76%, with a 100% feasibility rate. It achieved the lowest dispersion (Std ; Max–Min spread ), shaved peak-demand charges by 9%, and limited depth-of-discharge swings to %, projecting a 12%–18% life extension. A 50-iteration run completed in 38.6 s on a 3.4 GHz CPU — over faster than a comparable MILP baseline — demonstrating suitability for near-real-time PV–wind microgrid control. Within the scope of Sustainable Computing: Informatics and Systems, this work delivers a reproducible, open-source optimization engine with non-parametric statistical validation and edge-suitable runtimes, linking algorithmic advances to system-level sustainability metrics (LCOS, demand charges). The results show how algorithm–system co-design can lower operating cost and risk while preserving battery health in cyber–physical energy systems.
期刊介绍:
Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.