{"title":"Discovery and engineering of bifunctional enzymes for lignocellulose degradation: Metagenomic and computational approaches","authors":"Razieh Goudarzi , Donya Afshar Jahanshahi , Arashk Kavousi , Shohreh Ariaeenejad","doi":"10.1016/j.btre.2025.e00926","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient degradation of lignocellulosic biomass is vital for converting plant-based waste into renewable fuels and chemicals. Owing to its complex composition of cellulose, hemicellulose, and lignin, its enzymatic breakdown often requires multiple enzymes to act synergistically. Bifunctional enzymes that combine two catalytic activities in a single protein offer a promising solution. This review highlights recent advances in the identification and engineering of bifunctional enzymes for lignocellulose degradation, particularly through metagenomics, protein fusion and computational design. Functional pairings, such as cellulase/xylanase, were examined with a focus on their synergistic effects, substrate specificity, and stability. Promiscuous and naturally evolved bifunctional enzymes from extreme or uncultured environments are also discussed. Advances <em>in silico</em> modeling and directed evolution have enhanced enzyme properties such as thermostability and substrate range. The review concludes with an outlook on the challenges and opportunities of implementing bifunctional enzymes to improve the economic and technical viability of biomass conversion.</div></div>","PeriodicalId":38117,"journal":{"name":"Biotechnology Reports","volume":"48 ","pages":"Article e00926"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215017X25000530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient degradation of lignocellulosic biomass is vital for converting plant-based waste into renewable fuels and chemicals. Owing to its complex composition of cellulose, hemicellulose, and lignin, its enzymatic breakdown often requires multiple enzymes to act synergistically. Bifunctional enzymes that combine two catalytic activities in a single protein offer a promising solution. This review highlights recent advances in the identification and engineering of bifunctional enzymes for lignocellulose degradation, particularly through metagenomics, protein fusion and computational design. Functional pairings, such as cellulase/xylanase, were examined with a focus on their synergistic effects, substrate specificity, and stability. Promiscuous and naturally evolved bifunctional enzymes from extreme or uncultured environments are also discussed. Advances in silico modeling and directed evolution have enhanced enzyme properties such as thermostability and substrate range. The review concludes with an outlook on the challenges and opportunities of implementing bifunctional enzymes to improve the economic and technical viability of biomass conversion.
Biotechnology ReportsImmunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
15.80
自引率
0.00%
发文量
79
审稿时长
55 days
期刊介绍:
Biotechnology Reports covers all aspects of Biotechnology particularly those reports that are useful and informative and that will be of value to other researchers in related fields. Biotechnology Reports loves ground breaking science, but will also accept good science that can be of use to the biotechnology community. The journal maintains a high quality peer review where submissions are considered on the basis of scientific validity and technical quality. Acceptable paper types are research articles (short or full communications), methods, mini-reviews, and commentaries in the following areas: Healthcare and pharmaceutical biotechnology Agricultural and food biotechnology Environmental biotechnology Molecular biology, cell and tissue engineering and synthetic biology Industrial biotechnology, biofuels and bioenergy Nanobiotechnology Bioinformatics & systems biology New processes and products in biotechnology, bioprocess engineering.