Qiaoyun Zhang , Sze-Han Wang , Chung-Chih Lin , Chih-Yung Chang , Diptendu Sinha Roy
{"title":"CARES: A Hybrid caregivers recommendation system using deep learning and knowledge graphs","authors":"Qiaoyun Zhang , Sze-Han Wang , Chung-Chih Lin , Chih-Yung Chang , Diptendu Sinha Roy","doi":"10.1016/j.iot.2025.101769","DOIUrl":null,"url":null,"abstract":"<div><div>Recommendation systems have prospered by leveraging user-item interactions and their features for personalized recommendations. Recent advancements in deep learning further enhance these recommendation systems with powerful backbones for learning from user-item data. However, solely depending on these interactions often leads to the cold-start problem, where items lacking historical data cannot be effectively recommended. Additionally, the issue of high similarity between user and item features frequently goes unresolved. This paper introduces a Hybrid Caregiver Recommendation mechanism, called CARES, designed to recommend suitable caregivers for postpartum women using deep learning and knowledge graphs. Initially, the proposed CARES utilizes Extreme Gradient Boosting (XGBoost) to identify important features, addressing the issue of feature similarity. Then it employs <em>K</em>-Means clustering to group postpartum women and caregivers based on similar features. Subsequently, it utilizes a Deep & Cross Network (DCN) to automatically learn feature interactions and constructs knowledge graphs to tackle the cold start problem. The proposed CARES also integrates exploration and exploitation strategies to balance the accuracy and diversity of recommendations. The proposed CARES compares with existing mechanisms on real datasets, and the simulation results demonstrate its effectiveness in terms of precision, recall, and F1-Score.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"34 ","pages":"Article 101769"},"PeriodicalIF":7.6000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660525002835","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Recommendation systems have prospered by leveraging user-item interactions and their features for personalized recommendations. Recent advancements in deep learning further enhance these recommendation systems with powerful backbones for learning from user-item data. However, solely depending on these interactions often leads to the cold-start problem, where items lacking historical data cannot be effectively recommended. Additionally, the issue of high similarity between user and item features frequently goes unresolved. This paper introduces a Hybrid Caregiver Recommendation mechanism, called CARES, designed to recommend suitable caregivers for postpartum women using deep learning and knowledge graphs. Initially, the proposed CARES utilizes Extreme Gradient Boosting (XGBoost) to identify important features, addressing the issue of feature similarity. Then it employs K-Means clustering to group postpartum women and caregivers based on similar features. Subsequently, it utilizes a Deep & Cross Network (DCN) to automatically learn feature interactions and constructs knowledge graphs to tackle the cold start problem. The proposed CARES also integrates exploration and exploitation strategies to balance the accuracy and diversity of recommendations. The proposed CARES compares with existing mechanisms on real datasets, and the simulation results demonstrate its effectiveness in terms of precision, recall, and F1-Score.
期刊介绍:
Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT.
The journal will place a high priority on timely publication, and provide a home for high quality.
Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.