Optimizing syngas production for enhanced gas turbine power generation: A thermodynamic and feedstock analysis

Toyese Oyegoke , Abdullahi Jibrin
{"title":"Optimizing syngas production for enhanced gas turbine power generation: A thermodynamic and feedstock analysis","authors":"Toyese Oyegoke ,&nbsp;Abdullahi Jibrin","doi":"10.1016/j.nxener.2025.100430","DOIUrl":null,"url":null,"abstract":"<div><div>As the demand for alternative and renewable energy solutions increases, particularly in developing nations facing unreliable power supply, optimizing biomass gasification processes for power generation has become a critical challenge. Syngas, composed primarily of carbon monoxide (CO), hydrogen (H₂), and carbon dioxide (CO₂), plays a pivotal role in driving gas turbine power generation. However, the impact of varying feedstock types, thermodynamic conditions, and syngas quality on power output is still not well understood. This study addresses this knowledge gap by investigating the effects of feedstock composition (C1 to C4 alkanes), temperature, and pressure on syngas production and gas turbine efficiency. Using process simulations with DWSim and optimization techniques such as response surface methodology (RSM), we identify optimal syngas compositions for maximizing gas turbine duty (GTD). The results demonstrate that a balanced syngas mixture (CO = 4 kmol/h, H₂ = 4 kmol/h, CO₂ = 4 kmol/h) yields a GTD of 48.2 kW, significantly enhancing power generation efficiency. Our findings underscore the critical role of CO₂ in stabilizing combustion, improving thermal efficiency, and ensuring stable turbine operation, while CO and H₂ contribute directly to the energy conversion process. This research provides valuable insights for optimizing bioenergy systems, offering predictive models that can guide the development of more efficient and sustainable biomass-based power generation technologies.</div></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"9 ","pages":"Article 100430"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X25001930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As the demand for alternative and renewable energy solutions increases, particularly in developing nations facing unreliable power supply, optimizing biomass gasification processes for power generation has become a critical challenge. Syngas, composed primarily of carbon monoxide (CO), hydrogen (H₂), and carbon dioxide (CO₂), plays a pivotal role in driving gas turbine power generation. However, the impact of varying feedstock types, thermodynamic conditions, and syngas quality on power output is still not well understood. This study addresses this knowledge gap by investigating the effects of feedstock composition (C1 to C4 alkanes), temperature, and pressure on syngas production and gas turbine efficiency. Using process simulations with DWSim and optimization techniques such as response surface methodology (RSM), we identify optimal syngas compositions for maximizing gas turbine duty (GTD). The results demonstrate that a balanced syngas mixture (CO = 4 kmol/h, H₂ = 4 kmol/h, CO₂ = 4 kmol/h) yields a GTD of 48.2 kW, significantly enhancing power generation efficiency. Our findings underscore the critical role of CO₂ in stabilizing combustion, improving thermal efficiency, and ensuring stable turbine operation, while CO and H₂ contribute directly to the energy conversion process. This research provides valuable insights for optimizing bioenergy systems, offering predictive models that can guide the development of more efficient and sustainable biomass-based power generation technologies.
优化合成气生产增强燃气轮机发电:热力学和原料分析
随着对替代能源和可再生能源解决方案的需求增加,特别是在面临电力供应不可靠的发展中国家,优化生物质气化发电过程已成为一项关键挑战。合成气主要由一氧化碳(CO)、氢气(H₂)和二氧化碳(CO₂)组成,在驱动燃气轮机发电中起着关键作用。然而,不同的原料类型、热力学条件和合成气质量对输出功率的影响仍然没有得到很好的理解。本研究通过调查原料组成(C1到C4烷烃)、温度和压力对合成气产量和燃气轮机效率的影响,解决了这一知识差距。利用DWSim的过程模拟和响应面法(RSM)等优化技术,我们确定了最大化燃气轮机负荷(GTD)的最佳合成气成分。结果表明,平衡的合成气混合物(CO = 4 kmol/h, h₂= 4 kmol/h, CO₂= 4 kmol/h)的GTD为48.2 kW,显著提高了发电效率。我们的研究结果强调了CO₂在稳定燃烧、提高热效率和确保涡轮机稳定运行方面的关键作用,而CO和H₂直接有助于能量转换过程。这项研究为优化生物能源系统提供了有价值的见解,提供了预测模型,可以指导更高效和可持续的生物质发电技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信