Nicolas Picard , Nikola Besic , Modeste Meliho , Julien Sainte-Marie , Frédéric Mortier , Myriam Legay
{"title":"Bayesian model averaging of climate-dependent forest models using Expectation–Maximization","authors":"Nicolas Picard , Nikola Besic , Modeste Meliho , Julien Sainte-Marie , Frédéric Mortier , Myriam Legay","doi":"10.1016/j.ecolmodel.2025.111355","DOIUrl":null,"url":null,"abstract":"<div><div>In the context of rapid climate change, climate-dependent models are essential for assessing species vulnerability. However, variation in model structure and divergence in their predictions introduce substantial uncertainty. Rather than selecting a single “best” model, a more robust strategy is to integrate predictions across models. Bayesian model averaging with Expectation–Maximization (BEM) provides an alternative to simple model averaging (SMA) and weighted model averaging (WMA) for combining ensemble predictions. To date, BEM has been rarely applied to tree species distribution models. We developed a BEM framework for models predicting either species occurrence or proxy variables linked to occurrence. The approach was applied to European beech (<em>Fagus sylvatica</em>) in France, using an ensemble of six models: four species distribution models, one model predicting the probability of hydraulic failure, and one model predicting juvenile productivity. In contrast to SMA and WMA, which assigned similar weights across models, BEM concentrated 85% of the weight on two models. Furthermore, BEM enabled spatially explicit decomposition of model weights, allowing us to identify regions where predictions diverged most strongly. The resulting probability maps revealed a specific zone in environmental space where model agreement on beech occurrence was particularly limited. Focusing on this zone may help refine projections and shed light on the ecological mechanisms that enable local persistence.</div></div>","PeriodicalId":51043,"journal":{"name":"Ecological Modelling","volume":"510 ","pages":"Article 111355"},"PeriodicalIF":3.2000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Modelling","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304380025003412","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the context of rapid climate change, climate-dependent models are essential for assessing species vulnerability. However, variation in model structure and divergence in their predictions introduce substantial uncertainty. Rather than selecting a single “best” model, a more robust strategy is to integrate predictions across models. Bayesian model averaging with Expectation–Maximization (BEM) provides an alternative to simple model averaging (SMA) and weighted model averaging (WMA) for combining ensemble predictions. To date, BEM has been rarely applied to tree species distribution models. We developed a BEM framework for models predicting either species occurrence or proxy variables linked to occurrence. The approach was applied to European beech (Fagus sylvatica) in France, using an ensemble of six models: four species distribution models, one model predicting the probability of hydraulic failure, and one model predicting juvenile productivity. In contrast to SMA and WMA, which assigned similar weights across models, BEM concentrated 85% of the weight on two models. Furthermore, BEM enabled spatially explicit decomposition of model weights, allowing us to identify regions where predictions diverged most strongly. The resulting probability maps revealed a specific zone in environmental space where model agreement on beech occurrence was particularly limited. Focusing on this zone may help refine projections and shed light on the ecological mechanisms that enable local persistence.
期刊介绍:
The journal is concerned with the use of mathematical models and systems analysis for the description of ecological processes and for the sustainable management of resources. Human activity and well-being are dependent on and integrated with the functioning of ecosystems and the services they provide. We aim to understand these basic ecosystem functions using mathematical and conceptual modelling, systems analysis, thermodynamics, computer simulations, and ecological theory. This leads to a preference for process-based models embedded in theory with explicit causative agents as opposed to strictly statistical or correlative descriptions. These modelling methods can be applied to a wide spectrum of issues ranging from basic ecology to human ecology to socio-ecological systems. The journal welcomes research articles, short communications, review articles, letters to the editor, book reviews, and other communications. The journal also supports the activities of the [International Society of Ecological Modelling (ISEM)](http://www.isemna.org/).