On the structure of perfectly divisible graphs

IF 0.7 3区 数学 Q2 MATHEMATICS
Chính T. Hoàng
{"title":"On the structure of perfectly divisible graphs","authors":"Chính T. Hoàng","doi":"10.1016/j.disc.2025.114809","DOIUrl":null,"url":null,"abstract":"<div><div>A graph <em>G</em> is perfectly divisible if every induced subgraph <em>H</em> of <em>G</em> contains a set <em>X</em> of vertices such that <em>X</em> meets all largest cliques of <em>H</em>, and <em>X</em> induces a perfect graph. The chromatic number of a perfectly divisible graph <em>G</em> is bounded by <span><math><msup><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> where <em>ω</em> denotes the number of vertices in a largest clique of <em>G</em>. A graph <em>G</em> is minimally non-perfectly divisible if <em>G</em> is not perfectly divisible but each of its proper induced subgraph is. A set <em>C</em> of vertices of <em>G</em> is a clique cutset if <em>C</em> induces a clique in <em>G</em>, and <span><math><mi>G</mi><mo>−</mo><mi>C</mi></math></span> is disconnected. We prove that a <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>-free minimally non-perfectly divisible graph cannot contain a clique cutset. This result allows us to re-establish several theorems on the perfect divisibility of some classes of <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>-free graphs. We will show that recognizing perfectly divisible graphs is NP-hard.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 2","pages":"Article 114809"},"PeriodicalIF":0.7000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25004170","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A graph G is perfectly divisible if every induced subgraph H of G contains a set X of vertices such that X meets all largest cliques of H, and X induces a perfect graph. The chromatic number of a perfectly divisible graph G is bounded by ω2 where ω denotes the number of vertices in a largest clique of G. A graph G is minimally non-perfectly divisible if G is not perfectly divisible but each of its proper induced subgraph is. A set C of vertices of G is a clique cutset if C induces a clique in G, and GC is disconnected. We prove that a P5-free minimally non-perfectly divisible graph cannot contain a clique cutset. This result allows us to re-establish several theorems on the perfect divisibility of some classes of P5-free graphs. We will show that recognizing perfectly divisible graphs is NP-hard.
论完全可分图的结构
如果G的每个诱导子图H包含顶点集合X,使得X满足H的所有最大团,并且X诱导出一个完美图,那么图G是完全可分的。完全可整除图G的色数以ω2为界,其中ω表示G的最大团中的顶点数。如果G不完全可整除,则图G是最小不可完全可整除的,但它的每个固有诱导子图都是完全可整除的。如果C在G中引起团,且G−C不连通,则G的顶点集C为团切集。证明了无p5的最小不可完全可分图不能包含团切集。这一结果使我们能够重新建立一些关于P5-free图的完全可整除性的定理。我们将证明,识别完全可分图是np困难的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信