Martín Nieto Bermejo , Alejandro García Zancajo , Antonio Nieto-Márquez
{"title":"Fostering chemical engineering competencies through competition teams: The UPM MotoStudent Electric experience","authors":"Martín Nieto Bermejo , Alejandro García Zancajo , Antonio Nieto-Márquez","doi":"10.1016/j.ece.2025.09.001","DOIUrl":null,"url":null,"abstract":"<div><div>An active learning experience was developed through the UPM MotoStudent competition team, where chemical engineering students tackled challenges related to the cooling of the electric motor. This project led to the development of four chemical engineering-related projects: (i) drying and cooling of air using an adsorption bed and dry ice, (ii) design and construction of a radiator, (iii) development of a testing bench with control systems and information monitoring, and (iv) development and characterization of dielectric oils for the prevention of electroerosion phenomenon. The competition provided a hands-on platform for students to apply their knowledge of heat and mass transfer, fluid mechanics, and process control in a real-world context. Furthermore, soft skills such as leadership, communication, teamwork, and time management were crucially developed, contributing to the overall success of the project. The learning outcomes of this experience pushed students to the highest levels of Bloom's taxonomy—Evaluate and Create—levels seldom reached in undergraduate courses. Participants highlighted the project's strong impact on technical learning, personal growth and teamwork.</div></div>","PeriodicalId":48509,"journal":{"name":"Education for Chemical Engineers","volume":"53 ","pages":"Pages 149-160"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Education for Chemical Engineers","FirstCategoryId":"95","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1749772825000442","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0
Abstract
An active learning experience was developed through the UPM MotoStudent competition team, where chemical engineering students tackled challenges related to the cooling of the electric motor. This project led to the development of four chemical engineering-related projects: (i) drying and cooling of air using an adsorption bed and dry ice, (ii) design and construction of a radiator, (iii) development of a testing bench with control systems and information monitoring, and (iv) development and characterization of dielectric oils for the prevention of electroerosion phenomenon. The competition provided a hands-on platform for students to apply their knowledge of heat and mass transfer, fluid mechanics, and process control in a real-world context. Furthermore, soft skills such as leadership, communication, teamwork, and time management were crucially developed, contributing to the overall success of the project. The learning outcomes of this experience pushed students to the highest levels of Bloom's taxonomy—Evaluate and Create—levels seldom reached in undergraduate courses. Participants highlighted the project's strong impact on technical learning, personal growth and teamwork.
期刊介绍:
Education for Chemical Engineers was launched in 2006 with a remit to publisheducation research papers, resource reviews and teaching and learning notes. ECE is targeted at chemical engineering academics and educators, discussing the ongoingchanges and development in chemical engineering education. This international title publishes papers from around the world, creating a global network of chemical engineering academics. Papers demonstrating how educational research results can be applied to chemical engineering education are particularly welcome, as are the accounts of research work that brings new perspectives to established principles, highlighting unsolved problems or indicating direction for future research relevant to chemical engineering education. Core topic areas: -Assessment- Accreditation- Curriculum development and transformation- Design- Diversity- Distance education-- E-learning Entrepreneurship programs- Industry-academic linkages- Benchmarking- Lifelong learning- Multidisciplinary programs- Outreach from kindergarten to high school programs- Student recruitment and retention and transition programs- New technology- Problem-based learning- Social responsibility and professionalism- Teamwork- Web-based learning