Efficiently ion-selective polybenzimidazole membrane with precisely controlled channels and hydrogen-bond networks for flow batteries

IF 9 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Haoren Zheng , Yulin Wu , Xin Liu , Pengzhu Gai , Dezhu Zhang , Yixing Wang , Kang Huang , Zhi Xu
{"title":"Efficiently ion-selective polybenzimidazole membrane with precisely controlled channels and hydrogen-bond networks for flow batteries","authors":"Haoren Zheng ,&nbsp;Yulin Wu ,&nbsp;Xin Liu ,&nbsp;Pengzhu Gai ,&nbsp;Dezhu Zhang ,&nbsp;Yixing Wang ,&nbsp;Kang Huang ,&nbsp;Zhi Xu","doi":"10.1016/j.memsci.2025.124733","DOIUrl":null,"url":null,"abstract":"<div><div>Polybenzimidazole (PBI) exhibits exceptional chemical stability and mechanical strength, positioning it as a highly promising material for ion conductive membranes (ICMs). However, its relatively low proton conductivity limits its performance in vanadium flow batteries (VFBs). In this study, we construct ultrafast proton-conducting molecularly mixed composite membranes (MMCMs) by strategically introducing organic macrocyclic cavitands (OMCs), especially 4-sulfocalix[6]arene (SCA6), into the PBI matrix. The open macrocyclic cavity of SCA6 modulates the channels of PBI membrane, thus facilitating proton transport, while its intrinsic cavity (diameter of ∼0.6 nm) effectively restricts vanadium permeation. Meanwhile, the <strong>–</strong>SO<sub>3</sub>H groups form an extensive and continuous hydrogen-bonding network within the membrane, which greatly enhances proton conductivity. The synergistic combination of precisely controlled channels and hydrogen-bond networks enables efficient ion-selective transport. Experimental results demonstrate that the MMCMs exhibit an excellent energy efficiency (EE) of 80.56 % at 220 mA cm<sup>−2</sup> and achieve long-term stability of 1700 cycles (&gt;1350 h) in the VFB system at 200 mA cm<sup>−2</sup>. Our work provides a facile preparation method for highly ion-selective PBI-based battery membranes.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"738 ","pages":"Article 124733"},"PeriodicalIF":9.0000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738825010464","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Polybenzimidazole (PBI) exhibits exceptional chemical stability and mechanical strength, positioning it as a highly promising material for ion conductive membranes (ICMs). However, its relatively low proton conductivity limits its performance in vanadium flow batteries (VFBs). In this study, we construct ultrafast proton-conducting molecularly mixed composite membranes (MMCMs) by strategically introducing organic macrocyclic cavitands (OMCs), especially 4-sulfocalix[6]arene (SCA6), into the PBI matrix. The open macrocyclic cavity of SCA6 modulates the channels of PBI membrane, thus facilitating proton transport, while its intrinsic cavity (diameter of ∼0.6 nm) effectively restricts vanadium permeation. Meanwhile, the SO3H groups form an extensive and continuous hydrogen-bonding network within the membrane, which greatly enhances proton conductivity. The synergistic combination of precisely controlled channels and hydrogen-bond networks enables efficient ion-selective transport. Experimental results demonstrate that the MMCMs exhibit an excellent energy efficiency (EE) of 80.56 % at 220 mA cm−2 and achieve long-term stability of 1700 cycles (>1350 h) in the VFB system at 200 mA cm−2. Our work provides a facile preparation method for highly ion-selective PBI-based battery membranes.

Abstract Image

用于液流电池的具有精确控制通道和氢键网络的高效离子选择性多苯并咪唑膜
聚苯并咪唑(PBI)具有优异的化学稳定性和机械强度,是一种非常有前途的离子导电膜(ICMs)材料。然而,其相对较低的质子电导率限制了其在钒液流电池(vfb)中的性能。在本研究中,我们通过在PBI基质中引入有机大环空腔体(OMCs),特别是4-磺基[6]芳烃(SCA6),构建了超快质子导电分子混合复合膜(MMCMs)。SCA6的开放大环腔调节PBI膜的通道,从而促进质子的运输,而其固有腔(直径约0.6 nm)有效地限制了钒的渗透。同时,-SO3H基团在膜内形成广泛而连续的氢键网络,大大提高了质子的导电性。精确控制的通道和氢键网络的协同组合实现了高效的离子选择性传输。实验结果表明,mmcm在220 mA cm - 2时的能量效率(EE)为80.56%,在200 mA cm - 2的VFB系统中实现了1700个循环(>1350 h)的长期稳定性。我们的工作为高离子选择性pbi基电池膜的制备提供了一种简便的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信