Eva Balsa-Canto , Nùria Campo-Manzanares , Artai R. Moimenta , Geoffrey Roudaut , Diego Troitiño-Jordedo
{"title":"Quantifying and managing uncertainty in systems biology: Mechanistic and data-driven models","authors":"Eva Balsa-Canto , Nùria Campo-Manzanares , Artai R. Moimenta , Geoffrey Roudaut , Diego Troitiño-Jordedo","doi":"10.1016/j.coisb.2025.100557","DOIUrl":null,"url":null,"abstract":"<div><div>Uncertainty poses a significant challenge to the reliability and interpretability of systems biology models. This review focuses on reducible epistemic uncertainty arising from incomplete data, measurement errors, or limited biological knowledge. We examine how this uncertainty affects both mechanistic models —such as dynamic kinetic and genome-scale metabolic models— and data-driven models, including neural networks trained on time-series data. Strategies for quantifying and mitigating uncertainty are reviewed, including profile likelihoods, Bayesian inference, ensemble modelling, optimal experimental design and active learning. Through illustrative case studies, we show how data limitations, model structure, and experimental design influence uncertainty propagation and model predictions. Finally, in our outlook, we highlight key research avenues to build more robust models, including hybrid frameworks combining mechanistic models with machine learning to improve interpretability and predictive performance, advances in inference methods and tools, or the definition of benchmarks to support reproducibility and method comparison.</div></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"42 ","pages":"Article 100557"},"PeriodicalIF":2.2000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452310025000174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Uncertainty poses a significant challenge to the reliability and interpretability of systems biology models. This review focuses on reducible epistemic uncertainty arising from incomplete data, measurement errors, or limited biological knowledge. We examine how this uncertainty affects both mechanistic models —such as dynamic kinetic and genome-scale metabolic models— and data-driven models, including neural networks trained on time-series data. Strategies for quantifying and mitigating uncertainty are reviewed, including profile likelihoods, Bayesian inference, ensemble modelling, optimal experimental design and active learning. Through illustrative case studies, we show how data limitations, model structure, and experimental design influence uncertainty propagation and model predictions. Finally, in our outlook, we highlight key research avenues to build more robust models, including hybrid frameworks combining mechanistic models with machine learning to improve interpretability and predictive performance, advances in inference methods and tools, or the definition of benchmarks to support reproducibility and method comparison.
期刊介绍:
Current Opinion in Systems Biology is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of Systems Biology. It publishes polished, concise and timely systematic reviews and opinion articles. In addition to describing recent trends, the authors are encouraged to give their subjective opinion on the topics discussed. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following areas will be covered by Current Opinion in Systems Biology: -Genomics and Epigenomics -Gene Regulation -Metabolic Networks -Cancer and Systemic Diseases -Mathematical Modelling -Big Data Acquisition and Analysis -Systems Pharmacology and Physiology -Synthetic Biology -Stem Cells, Development, and Differentiation -Systems Biology of Mold Organisms -Systems Immunology and Host-Pathogen Interaction -Systems Ecology and Evolution